Collections: - Name: SEResNet Metadata: Training Data: ImageNet Training Techniques: - SGD with Momentum - Weight Decay Training Resources: 8x V100 GPUs Epochs: 140 Batch Size: 256 Architecture: - ResNet Paper: https://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html README: configs/seresnet/README.md Models: - Config: configs/seresnet50/seresnet50_b32x8_imagenet.py In Collection: SEResNet Metadata: FLOPs: 4130000000 Parameters: 28090000 Name: seresnet50_b32x8_imagenet Results: - Dataset: ImageNet Metrics: Top 1 Accuracy: 77.74 Top 5 Accuracy: 93.84 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/se-resnet/se-resnet50_batch256_imagenet_20200804-ae206104.pth - Config: configs/seresnet101/seresnet101_b32x8_imagenet.py In Collection: SEResNet Metadata: FLOPs: 7860000000 Parameters: 49330000 Name: seresnet101_b32x8_imagenet Results: - Dataset: ImageNet Metrics: Top 1 Accuracy: 78.26 Top 5 Accuracy: 94.07 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/se-resnet/se-resnet101_batch256_imagenet_20200804-ba5b51d4.pth