Collections: - Name: FP16 Metadata: Training Data: ImageNet Training Resources: 8x V100 GPUs Training Techniques: - SGD with Momentum - Weight Decay - Mixed Precision Training Paper: https://arxiv.org/abs/1710.03740 README: configs/fp16/README.md Models: - Config: configs/fp16/resnet50_b32x8_fp16_dynamic_imagenet.py In Collection: FP16 Metadata: FLOPs: 4120000000 Parameters: 25560000 Epochs: 100 Batch Size: 256 Architecture: - ResNet Name: resnet50_b32x8_fp16_dynamic_imagenet Results: - Dataset: ImageNet Metrics: Top 1 Accuracy: 76.32 Top 5 Accuracy: 93.04 Task: Image Classification Weights: https://download.openmmlab.com/mmclassification/v0/fp16/resnet50_batch256_fp16_imagenet_20210320-b3964210.pth