from absl import app, flags, logging from absl.flags import FLAGS import numpy as np from yolov3_tf2.models import YoloV3, YoloV3Tiny from yolov3_tf2.utils import load_darknet_weights import tensorflow as tf import os os.environ['HIP_VISIBLE_DEVICES'] = '0' flags.DEFINE_string('weights', './data/yolov3.weights', 'path to weights file') flags.DEFINE_string('output', './checkpoints/yolov3.tf', 'path to output') flags.DEFINE_boolean('tiny', False, 'yolov3 or yolov3-tiny') flags.DEFINE_integer('num_classes', 80, 'number of classes in the model') def main(_argv): physical_devices = tf.config.experimental.list_physical_devices('GPU') if len(physical_devices) > 0: tf.config.experimental.set_memory_growth(physical_devices[0], True) if FLAGS.tiny: yolo = YoloV3Tiny(classes=FLAGS.num_classes) else: yolo = YoloV3(classes=FLAGS.num_classes) yolo.summary() logging.info('model created') load_darknet_weights(yolo, FLAGS.weights, FLAGS.tiny) logging.info('weights loaded') img = np.random.random((1, 320, 320, 3)).astype(np.float32) output = yolo(img) logging.info('sanity check passed') yolo.save_weights(FLAGS.output) logging.info('weights saved') if __name__ == '__main__': try: app.run(main) except SystemExit: pass