import os import random import xml.etree.ElementTree as ET from utils.utils import get_classes #--------------------------------------------------------------------------------------------------------------------------------# # annotation_mode用于指定该文件运行时计算的内容 # annotation_mode为0代表整个标签处理过程,包括获得VOCdevkit/VOC2007/ImageSets里面的txt以及训练用的2007_train.txt、2007_val.txt # annotation_mode为1代表获得VOCdevkit/VOC2007/ImageSets里面的txt # annotation_mode为2代表获得训练用的2007_train.txt、2007_val.txt #--------------------------------------------------------------------------------------------------------------------------------# annotation_mode = 2 #-------------------------------------------------------------------# # 必须要修改,用于生成2007_train.txt、2007_val.txt的目标信息 # 与训练和预测所用的classes_path一致即可 # 如果生成的2007_train.txt里面没有目标信息 # 那么就是因为classes没有设定正确 # 仅在annotation_mode为0和2的时候有效 #-------------------------------------------------------------------# classes_path = 'model_data/voc_classes.txt' #--------------------------------------------------------------------------------------------------------------------------------# # trainval_percent用于指定(训练集+验证集)与测试集的比例,默认情况下 (训练集+验证集):测试集 = 9:1 # train_percent用于指定(训练集+验证集)中训练集与验证集的比例,默认情况下 训练集:验证集 = 9:1 # 仅在annotation_mode为0和1的时候有效 #--------------------------------------------------------------------------------------------------------------------------------# trainval_percent = 0.9 train_percent = 0.9 #-------------------------------------------------------# # 指向VOC数据集所在的文件夹 # 默认指向根目录下的VOC数据集 #-------------------------------------------------------# VOCdevkit_path = 'VOCdevkit' VOCdevkit_sets = [('2012', 'train'), ('2012', 'val')] classes, _ = get_classes(classes_path) def convert_annotation(year, image_id, list_file): in_file = open(os.path.join(VOCdevkit_path, 'VOC%s/Annotations/%s.xml'%(year, image_id)), encoding='utf-8') tree=ET.parse(in_file) root = tree.getroot() for obj in root.iter('object'): difficult = 0 if obj.find('difficult')!=None: difficult = obj.find('difficult').text cls = obj.find('name').text if cls not in classes or int(difficult)==1: continue cls_id = classes.index(cls) xmlbox = obj.find('bndbox') b = (int(float(xmlbox.find('xmin').text)), int(float(xmlbox.find('ymin').text)), int(float(xmlbox.find('xmax').text)), int(float(xmlbox.find('ymax').text))) list_file.write(" " + ",".join([str(a) for a in b]) + ',' + str(cls_id)) if __name__ == "__main__": random.seed(0) if annotation_mode == 0 or annotation_mode == 1: print("Generate txt in ImageSets.") xmlfilepath = os.path.join(VOCdevkit_path, 'VOC2012/Annotations') saveBasePath = os.path.join(VOCdevkit_path, 'VOC2012/ImageSets/Main') temp_xml = os.listdir(xmlfilepath) total_xml = [] for xml in temp_xml: if xml.endswith(".xml"): total_xml.append(xml) num = len(total_xml) list = range(num) tv = int(num*trainval_percent) tr = int(tv*train_percent) trainval= random.sample(list,tv) train = random.sample(trainval,tr) print("train and val size",tv) print("train size",tr) ftrainval = open(os.path.join(saveBasePath,'trainval.txt'), 'w') ftest = open(os.path.join(saveBasePath,'test.txt'), 'w') ftrain = open(os.path.join(saveBasePath,'train.txt'), 'w') fval = open(os.path.join(saveBasePath,'val.txt'), 'w') for i in list: name=total_xml[i][:-4]+'\n' if i in trainval: ftrainval.write(name) if i in train: ftrain.write(name) else: fval.write(name) else: ftest.write(name) ftrainval.close() ftrain.close() fval.close() ftest.close() print("Generate txt in ImageSets done.") if annotation_mode == 0 or annotation_mode == 2: print("Generate 2007_train.txt and 2007_val.txt for train.") for year, image_set in VOCdevkit_sets: image_ids = open(os.path.join(VOCdevkit_path, 'VOC%s/ImageSets/Main/%s.txt'%(year, image_set)), encoding='utf-8').read().strip().split() list_file = open('%s_%s.txt'%(year, image_set), 'w', encoding='utf-8') for image_id in image_ids: list_file.write('%s/VOC%s/JPEGImages/%s.jpg'%(os.path.abspath(VOCdevkit_path), year, image_id)) convert_annotation(year, image_id, list_file) list_file.write('\n') list_file.close() print("Generate 2012_train.txt and 2012_val.txt for train done.")