# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------- # References: # DeiT: https://github.com/facebookresearch/deit # BEiT: https://github.com/microsoft/unilm/tree/master/beit # -------------------------------------------------------- import math import sys from typing import Iterable, Optional import torch from timm.data import Mixup from timm.utils import accuracy import util.misc as misc import util.lr_sched as lr_sched def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module, data_loader: Iterable, optimizer: torch.optim.Optimizer, device: torch.device, epoch: int, loss_scaler, max_norm: float = 0, mixup_fn: Optional[Mixup] = None, log_writer=None, args=None): model.train(True) metric_logger = misc.MetricLogger(delimiter=" ") metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}')) header = 'Epoch: [{}]'.format(epoch) print_freq = 20 accum_iter = args.accum_iter optimizer.zero_grad() if log_writer is not None: print('log_dir: {}'.format(log_writer.log_dir)) for data_iter_step, (samples, targets) in enumerate(metric_logger.log_every(data_loader, print_freq, header)): # we use a per iteration (instead of per epoch) lr scheduler if data_iter_step % accum_iter == 0: lr_sched.adjust_learning_rate(optimizer, data_iter_step / len(data_loader) + epoch, args) samples = samples.to(device, non_blocking=True) targets = targets.to(device, non_blocking=True) if mixup_fn is not None: samples, targets = mixup_fn(samples, targets) with torch.cuda.amp.autocast(): outputs = model(samples) loss = criterion(outputs, targets) loss_value = loss.item() if not math.isfinite(loss_value): print("Loss is {}, stopping training".format(loss_value)) sys.exit(1) loss /= accum_iter loss_scaler(loss, optimizer, clip_grad=max_norm, parameters=model.parameters(), create_graph=False, update_grad=(data_iter_step + 1) % accum_iter == 0) if (data_iter_step + 1) % accum_iter == 0: optimizer.zero_grad() torch.cuda.synchronize() metric_logger.update(loss=loss_value) min_lr = 10. max_lr = 0. for group in optimizer.param_groups: min_lr = min(min_lr, group["lr"]) max_lr = max(max_lr, group["lr"]) metric_logger.update(lr=max_lr) loss_value_reduce = misc.all_reduce_mean(loss_value) if log_writer is not None and (data_iter_step + 1) % accum_iter == 0: """ We use epoch_1000x as the x-axis in tensorboard. This calibrates different curves when batch size changes. """ epoch_1000x = int((data_iter_step / len(data_loader) + epoch) * 1000) log_writer.add_scalar('loss', loss_value_reduce, epoch_1000x) log_writer.add_scalar('lr', max_lr, epoch_1000x) # gather the stats from all processes metric_logger.synchronize_between_processes() print("Averaged stats:", metric_logger) return {k: meter.global_avg for k, meter in metric_logger.meters.items()} @torch.no_grad() def evaluate(data_loader, model, device): criterion = torch.nn.CrossEntropyLoss() metric_logger = misc.MetricLogger(delimiter=" ") header = 'Test:' # switch to evaluation mode model.eval() for batch in metric_logger.log_every(data_loader, 10, header): images = batch[0] target = batch[-1] images = images.to(device, non_blocking=True) target = target.to(device, non_blocking=True) # compute output with torch.cuda.amp.autocast(): output = model(images) loss = criterion(output, target) acc1, acc5 = accuracy(output, target, topk=(1, 5)) batch_size = images.shape[0] metric_logger.update(loss=loss.item()) metric_logger.meters['acc1'].update(acc1.item(), n=batch_size) metric_logger.meters['acc5'].update(acc5.item(), n=batch_size) # gather the stats from all processes metric_logger.synchronize_between_processes() print('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}' .format(top1=metric_logger.acc1, top5=metric_logger.acc5, losses=metric_logger.loss)) return {k: meter.global_avg for k, meter in metric_logger.meters.items()}