# MMsegmentation算例测试 ## 测试前准备 使用cityscapes数据集.链接:https://pan.baidu.com/s/1kxqTJxoyqcIGTCPOMbzB_g 提取码:asie ### 环境部署 ```python yum install python3 yum install libquadmath yum install numactl yum install openmpi3 yum install glog yum install lmdb-libs yum install opencv-core yum install opencv yum install openblas-serial pip3 install --upgrade pip pip3 install opencv-python ``` ### 安装python依赖包 ```python pip3 install torch-1.10.0a0+gitcc7c9c7-cp36-cp36m-linux_x86_64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple pip3 install torchvision-0.10.0a0+300a8a4-cp36-cp36m-linux_x86_64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple pip3 install mmcv_full-1.3.16-cp36-cp36m-linux_x86_64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple mmpose安装: cd mmsegmentation pip3 install -e . ``` 注:测试不同版本的dtk,需安装对应版本的库whl包,dtk22.04.1使用python3.7,dtk21.10.1使用python3.6,如果测试优化后的版本,需要设置export HIP_UPSAMPLE_OPTIMIZE=1 ## PSPNet R50测试 ### 单卡测试(单精度) ```python ./sing_test.sh configs/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes.py ``` 若使用dtk22.04.1测试,需设置 `export MIOPEN_FIND_MODE=1,export MIOPEN_USE_APPROXIMATE_PERFORMANCE=0`以下测试均相同. #### 参数说明 configs/_base_/datasets/cityscapes.py中batch_size=samples_per_gpu*卡数,性能计算方法:batch_size/time ![1659172384601](image/train/1659172384601.png) #### 性能关注:time ![1659172396166](image/train/1659172396166.png) ### 多卡测试(单精度) ```python ./multi_test.sh configs/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes.py ``` ## DeepLabV3 R50测试 ### 单卡测试(单精度) ```python ./sing_test.sh configs/deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes.py ``` #### 参数说明 configs/_base_/datasets/cityscapes.py中batch_size=samples_per_gpu*卡数,性能计算方法:batch_size/time ![1659172468356](image/train/1659172468356.png) #### 性能关注:time ![1659172478200](image/train/1659172478200.png) ### 多卡测试(单精度) ```python ./multi_test.sh configs/deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes.py ``` ## FCN R50测试 ### 单卡测试(单精度) ```python ./sing_test.sh configs/fcn/fcn_r50-d8_512x1024_40k_cityscapes.py ``` #### 参数说明 configs/_base_/datasets/cityscapes.py中batch_size=samples_per_gpu*卡数,性能计算方法:batch_size/time ![1659172530175](image/train/1659172530175.png) #### 性能关注:time ![1659172540450](image/train/1659172540450.png) ### 多卡测试(单精度) ```python ./multi_test.sh configs/fcn/fcn_r50-d8_512x1024_40k_cityscapes.py ``` ## UperNet R50测试 ### 单卡测试(单精度) ```python ./sing_test.sh configs/upernet/upernet_r50_512x1024_40k_cityscapes.py ``` #### 参数说明 configs/_base_/datasets/cityscapes.py中batch_size=samples_per_gpu*卡数,性能计算方法:batch_size/time ![1659172631957](image/train/1659172631957.png) #### 性能关注:time ![1659172640432](image/train/1659172640432.png) ### 多卡测试(单精度) ```python ./multi_test.sh configs/upernet/upernet_r50_512x1024_40k_cityscapes.py ``` ## DeepLabV3plus_R50测试 ### 单卡测试(单精度) ```python ./sing_test.sh configs/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_40k_cityscapes.py ``` #### 参数说明 configs/_base_/datasets/cityscapes.py中batch_size=samples_per_gpu*卡数,性能计算方法:batch_size/time ![1659172696867](image/train/1659172696867.png) #### 性能关注:time ![1659172709859](image/train/1659172709859.png) ### 多卡测试(单精度) ```python ./multi_test.sh configs/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_40k_cityscapes.py ```