import numpy as np import torch import torch.nn as nn def accuracy_numpy(pred, target, topk=1, thrs=None): if thrs is None: thrs = 0.0 if isinstance(thrs, float): thrs = (thrs, ) res_single = True elif isinstance(thrs, tuple): res_single = False else: raise TypeError( f'thrs should be float or tuple, but got {type(thrs)}.') res = [] maxk = max(topk) num = pred.shape[0] pred_label = pred.argsort(axis=1)[:, -maxk:][:, ::-1] pred_score = np.sort(pred, axis=1)[:, -maxk:][:, ::-1] for k in topk: correct_k = pred_label[:, :k] == target.reshape(-1, 1) res_thr = [] for thr in thrs: # Only prediction values larger than thr are counted as correct _correct_k = correct_k & (pred_score[:, :k] > thr) _correct_k = np.logical_or.reduce(_correct_k, axis=1) res_thr.append(_correct_k.sum() * 100. / num) if res_single: res.append(res_thr[0]) else: res.append(res_thr) return res def accuracy_torch(pred, target, topk=1, thrs=None): if thrs is None: thrs = 0.0 if isinstance(thrs, float): thrs = (thrs, ) res_single = True elif isinstance(thrs, tuple): res_single = False else: raise TypeError( f'thrs should be float or tuple, but got {type(thrs)}.') res = [] maxk = max(topk) num = pred.size(0) pred_score, pred_label = pred.topk(maxk, dim=1) pred_label = pred_label.t() correct = pred_label.eq(target.view(1, -1).expand_as(pred_label)) for k in topk: res_thr = [] for thr in thrs: # Only prediction values larger than thr are counted as correct _correct = correct & (pred_score.t() > thr) correct_k = _correct[:k].reshape(-1).float().sum(0, keepdim=True) res_thr.append(correct_k.mul_(100. / num)) if res_single: res.append(res_thr[0]) else: res.append(res_thr) return res def accuracy(pred, target, topk=1, thrs=None): """Calculate accuracy according to the prediction and target. Args: pred (torch.Tensor | np.array): The model prediction. target (torch.Tensor | np.array): The target of each prediction topk (int | tuple[int]): If the predictions in ``topk`` matches the target, the predictions will be regarded as correct ones. Defaults to 1. thrs (float, optional): thrs (float | tuple[float], optional): Predictions with scores under the thresholds are considered negative. Default to None. Returns: float | list[float] | list[list[float]]: If the input ``topk`` is a single integer, the function will return a single float or a list depending on whether ``thrs`` is a single float. If the input ``topk`` is a tuple, the function will return a list of results of accuracies of each ``topk`` number. That is to say, as long as ``topk`` is a tuple, the returned list shall be of the same length as topk. """ assert isinstance(topk, (int, tuple)) if isinstance(topk, int): topk = (topk, ) return_single = True else: return_single = False if isinstance(pred, torch.Tensor) and isinstance(target, torch.Tensor): res = accuracy_torch(pred, target, topk, thrs) elif isinstance(pred, np.ndarray) and isinstance(target, np.ndarray): res = accuracy_numpy(pred, target, topk, thrs) else: raise TypeError( f'pred and target should both be torch.Tensor or np.ndarray, ' f'but got {type(pred)} and {type(target)}.') return res[0] if return_single else res class Accuracy(nn.Module): def __init__(self, topk=(1, )): """Module to calculate the accuracy. Args: topk (tuple): The criterion used to calculate the accuracy. Defaults to (1,). """ super().__init__() self.topk = topk def forward(self, pred, target): """Forward function to calculate accuracy. Args: pred (torch.Tensor): Prediction of models. target (torch.Tensor): Target for each prediction. Returns: list[float]: The accuracies under different topk criterions. """ return accuracy(pred, target, self.topk)