## 简介 使用pytorch框架计算conformer网络 一些一阶查看README_ORIGIN.md [conformer的GIT网址](https://github.com/pengzhiliang/Conformer) ## 运行前准备 ``` #修改_amp_state.py:(python3.6/site-packages/apex/amp/_amp_state.py) if TORCH_MAJOR == 1 and TORCH_MINOR < 8: from torch._six import container_abcs else: import collections.abc as container_abcs 改为: if TORCH_MAJOR == 1 and TORCH_MINOR < 8: #from torch._six import container_abcs import collections.abc as container_abcs else: import collections.abc as container_abcs ``` ``` #修改helpers.py :(python3.6/site-packages/timm/models/layers/helpers.py) 修改: from torch._six import container_abcs 改为: import collections.abc as container_abcs ``` ## 数据集地址 昆山服务器存有数据集,地址: /public/software/apps/DeepLearning/Data/ImageNet-pytorch ## 单卡 ``` #启动 ./run1.sh ``` sh脚本中--nnodes 为机器数 ,--nproc_per_node每个机器显卡数目, 对于python参数: --num_workers 为显卡数,--data-path为数据路径,--output_dir为输出文件夹 ## 多卡 ``` #运行 ./run4.sh ``` ## 多机多卡 ``` cd 2node-run-comformer sbatch run_conformer_4dcus.sh (按照自己情况对#SBATCH -p、#SBATCH -J进行修改,运行结果保存在相应的slurm文件中) ```