# SSD(TensorFlow2.7)测试 ## 测试前准备 ### 数据集准备 训练所需的ssd_weights.h5和主干的权值可以在百度云下载。 链接: https://pan.baidu.com/s/1Ddk5UcZS5Dm4qechwGJDlA 提取码: 1k5d VOC数据集下载地址如下,里面已经包括了训练集、测试集、验证集(与测试集一样),无需再次划分: 链接: https://pan.baidu.com/s/1YuBbBKxm2FGgTU5OfaeC5A 提取码: uack ### python依赖包 使用Conda配置TF2.7环境,环境中包括根据whl文件安装的Tensorflow2.7和Python3.6 构建TF2的支持文件requiresments.txt 使用命令: ``` pip3 install -r requirements.txt -i http://mirrors.aliyun.com/pypi/simple/ ``` requiresments.txt中包括: ``` # Python dependencies required for development astor astunparse cached-property cachetools certifi charset-normalizer dataclasses devscripts distro flatbuffers gast google-auth google-auth-oauthlib google-pasta grpcio h5py idna importlib-metadata keras Keras-Applications Keras-Preprocessing libclang Markdown mock numpy oauthlib opt-einsum packaging portpicker protobuf pyasn1 pyasn1-modules pyparsing requests requests-oauthlib rsa scikit-build scipy setuptools six tensorboard tensorboard-data-server tensorboard-plugin-wit tensorflow-estimator tensorflow-io-gcs-filesystem tensorflow-model-optimization termcolor tf-models-official typing-extensions urllib3 Werkzeug wheel wrapt zipp horovod ``` ### 环境变量设置 ``` conda activate tensorflow2.7   source /public/software/compiler/rocm/dtk-21.10.1/env.sh   export LD_LIBRARY_PATH=/public/software/compiler/rocm/dtk-21.10.1/roctracer/lib/:$LD_LIBRARY_PATH   export HSA_FORCE_FINE_GRAIN_PCIE=1   export MIOPEN_FIND_MODE=3   export HIP_VISIBLE_DEVICES=0  ``` ## 单卡测试 ``` source activate   conda activate tensorflow2.7   source /public/software/compiler/rocm/dtk-21.10.1/env.sh   export LD_LIBRARY_PATH=/public/software/compiler/rocm/dtk-21.10.1/roctracer/lib/:$LD_LIBRARY_PATH   export HSA_FORCE_FINE_GRAIN_PCIE=1   export MIOPEN_FIND_MODE=3   export HIP_VISIBLE_DEVICES=0   cd /public/home/libodi/work1/ssd-tf2-master   python3 train32.py --dtype=fp32 ``` 执行如下代码即可进行训练 ``` python3 train32.py --dtype=fp32 ``` 使用ssd-tf2-master/voc_annotation.py自动生成训练集和验证集,其中训练集5717 张、验证集5823张。**具体为,修改voc_annotation.py里面的annotation_mode=2,运行voc_annotation.py生成根目录下的2007_train.txt和2007_val.txt。** 使用ssd-tf2-master/trian.py进行训练,train.py中有详细的参数配置选项,如batch_size、epoch数等。