# MMaction2算例测试 ## 测试前准备 ### 环境部署 ```python yum install python3 yum install libquadmath yum install numactl yum install openmpi3 yum install glog yum install lmdb-libs yum install opencv-core yum install opencv yum install openblas-serial pip3 install --upgrade pip pip3 install opencv-python ``` ### 安装python依赖包 ```python pip3 install torch-1.10.0a0+git2040069.dtk2210-cp37-cp37m-manylinux2014_x86_64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple pip3 install torchvision-0.10.0a0+e04d001.dtk2210-cp37-cp37m-manylinux2014_x86_64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple pip3 install mmcv_full-1.6.1+gitdebbc80.dtk2210-cp37-cp37m-manylinux2014_x86_64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple mmaction2 安装: cd mmaction2-0.24.1 pip3 install -e . ``` 注:测试不同版本的dtk,需安装对应版本的库whl包 ## ST-GCN测试 ### 单精度测试 ### 单卡测试(单精度) ```python export ROCBLAS_ATOMICS_MOD=1 ./sing_test.sh configs/skeleton/stgcn/stgcn_80e_ntu60_xsub_keypoint.py ``` #### 参数说明 configs/skeleton/stgcn/stgcn_80e_ntu60_xsub_keypoint.py 中batch_size=videos_per_gpu*卡数,性能计算方法:batch_size/time #### 性能关注:time ### 多卡测试(单精度) #### 单机多卡训练 1.pytorch单机多卡训练 ```python export ROCBLAS_ATOMICS_MOD=1 ./tools/dist_train.sh configs/skeleton/stgcn/stgcn_80e_ntu60_xsub_keypoint.py $GPUS ``` #### 多机多卡训练 1.pytorch多机多卡训练 在第一台机器上: NODES=2 NODE_RANK=0 PORT=12345 MASTER_ADDR=10.1.3.56 sh tools/dist_train.sh export ROCBLAS_ATOMICS_MOD=1 $GPUS 在第二台机器上: NODES=2 NODE_RANK=1 PORT=12345 MASTER_ADDR=10.1.3.56 sh tools/dist_train.sh export ROCBLAS_ATOMICS_MOD=1 $GPUS