# YOLOV5算力测试 ## 测试前准备 ### 数据集 使用COCO2017数据集 ### 环境搭建 建立python3.7的环境 ``` conda create -n yolov5 python='3.7' conda activate yolov5 ``` 安装python依赖包 ``` pip3 install PyYAML>=5.3.1 pip3 install tqdm>=4.41.0 pip3 install opencv-python>=4.1.2 pip3 install pandas>=1.1.4 pip3 install requests>=2.23.0 pip3 install matplotlib>=3.2.2 pip3 install seaborn>=0.11.0 pip3 install tensorboard>=2.4.1 ``` ``` pip3 install torch-1.10.0a0+git450cdd1.dtk22.4-cp37-cp37m-linux_x86_64.whl -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com pip3 install torchvision-0.10.0a0_dtk22.04_300a8a4-cp37-cp37m-linux_x86_64.whl -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com pip3 install pycocotools -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com ``` ## 训练 ``` export HSA_FORCE_FINE_GRAIN_PCIE=1 export MIOPEN_FIND_MODE=3 python3 train.py --data data/coco.yaml --cfg models/yolov5x.yaml --weights weights/yolov5x.pt --device 0 --batch-size 32 --epochs 10 ``` ## 精度测试 ``` python3 val.py --data data/coco-v5.yaml --weights runs/train/exp12/weights/best.pt --device 0 ```