#~/bin/bash #1: number of GPUs #2: Model File Address #3: BertSquad Data Directory Address #4: Output Directory Address NGPU_PER_NODE=$1 MODEL_FILE=$2 SQUAD_DIR=$3 OUTPUT_DIR=$4 NUM_NODES=1 NGPU=$((NGPU_PER_NODE*NUM_NODES)) EFFECTIVE_BATCH_SIZE=24 MAX_GPU_BATCH_SIZE=6 PER_GPU_BATCH_SIZE=$((EFFECTIVE_BATCH_SIZE/NGPU)) if [[ $PER_GPU_BATCH_SIZE -lt $MAX_GPU_BATCH_SIZE ]]; then GRAD_ACCUM_STEPS=1 else GRAD_ACCUM_STEPS=$((PER_GPU_BATCH_SIZE/MAX_GPU_BATCH_SIZE)) fi LR=3e-5 MASTER_PORT=$((NGPU+12345)) JOB_NAME="baseline_${NGPU}GPUs_${EFFECTIVE_BATCH_SIZE}batch_size" run_cmd="deepspeed --num_nodes ${NUM_NODES} --num_gpus ${NGPU_PER_NODE} \ nvidia_run_squad_baseline.py \ --bert_model bert-large-uncased \ --do_train \ --do_lower_case \ --do_predict \ --train_file $SQUAD_DIR/train-v1.1.json \ --predict_file $SQUAD_DIR/dev-v1.1.json \ --train_batch_size $PER_GPU_BATCH_SIZE \ --learning_rate ${LR} \ --num_train_epochs 2.0 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir $OUTPUT_DIR \ --job_name ${JOB_NAME} \ --gradient_accumulation_steps ${GRAD_ACCUM_STEPS} \ --fp16 \ --model_file $MODEL_FILE " echo ${run_cmd} eval ${run_cmd}