# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import argparse from tacotron2.text import symbols def tacotron2_parser(parent, add_help=False): """ Parse commandline arguments. """ parser = argparse.ArgumentParser(parents=[parent], add_help=add_help) # misc parameters parser.add_argument('--mask-padding', default=False, type=bool, help='Use mask padding') parser.add_argument('--n-mel-channels', default=80, type=int, help='Number of bins in mel-spectrograms') # symbols parameters global symbols len_symbols = len(symbols) symbols = parser.add_argument_group('symbols parameters') symbols.add_argument('--n-symbols', default=len_symbols, type=int, help='Number of symbols in dictionary') symbols.add_argument('--symbols-embedding-dim', default=512, type=int, help='Input embedding dimension') # encoder parameters encoder = parser.add_argument_group('encoder parameters') encoder.add_argument('--encoder-kernel-size', default=5, type=int, help='Encoder kernel size') encoder.add_argument('--encoder-n-convolutions', default=3, type=int, help='Number of encoder convolutions') encoder.add_argument('--encoder-embedding-dim', default=512, type=int, help='Encoder embedding dimension') # decoder parameters decoder = parser.add_argument_group('decoder parameters') decoder.add_argument('--n-frames-per-step', default=1, type=int, help='Number of frames processed per step') # currently only 1 is supported decoder.add_argument('--decoder-rnn-dim', default=1024, type=int, help='Number of units in decoder LSTM') decoder.add_argument('--prenet-dim', default=256, type=int, help='Number of ReLU units in prenet layers') decoder.add_argument('--max-decoder-steps', default=2000, type=int, help='Maximum number of output mel spectrograms') decoder.add_argument('--gate-threshold', default=0.5, type=float, help='Probability threshold for stop token') decoder.add_argument('--p-attention-dropout', default=0.1, type=float, help='Dropout probability for attention LSTM') decoder.add_argument('--p-decoder-dropout', default=0.1, type=float, help='Dropout probability for decoder LSTM') decoder.add_argument('--decoder-no-early-stopping', action='store_true', help='Stop decoding once all samples are finished') # attention parameters attention = parser.add_argument_group('attention parameters') attention.add_argument('--attention-rnn-dim', default=1024, type=int, help='Number of units in attention LSTM') attention.add_argument('--attention-dim', default=128, type=int, help='Dimension of attention hidden representation') # location layer parameters location = parser.add_argument_group('location parameters') location.add_argument( '--attention-location-n-filters', default=32, type=int, help='Number of filters for location-sensitive attention') location.add_argument( '--attention-location-kernel-size', default=31, type=int, help='Kernel size for location-sensitive attention') # Mel-post processing network parameters postnet = parser.add_argument_group('postnet parameters') postnet.add_argument('--postnet-embedding-dim', default=512, type=int, help='Postnet embedding dimension') postnet.add_argument('--postnet-kernel-size', default=5, type=int, help='Postnet kernel size') postnet.add_argument('--postnet-n-convolutions', default=5, type=int, help='Number of postnet convolutions') return parser