# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import torch from common.text.symbols import get_symbols, get_pad_idx from fastpitch.model import FastPitch from fastpitch.model_jit import FastPitchJIT from waveglow.model import WaveGlow def parse_model_args(model_name, parser, add_help=False): if model_name == 'WaveGlow': from waveglow.arg_parser import parse_waveglow_args return parse_waveglow_args(parser, add_help) elif model_name == 'FastPitch': from fastpitch.arg_parser import parse_fastpitch_args return parse_fastpitch_args(parser, add_help) else: raise NotImplementedError(model_name) def init_bn(module): if isinstance(module, torch.nn.modules.batchnorm._BatchNorm): if module.affine: module.weight.data.uniform_() for child in module.children(): init_bn(child) def get_model(model_name, model_config, device, uniform_initialize_bn_weight=False, forward_is_infer=False, jitable=False): if model_name == 'WaveGlow': model = WaveGlow(**model_config) elif model_name == 'FastPitch': if jitable: model = FastPitchJIT(**model_config) else: model = FastPitch(**model_config) else: raise NotImplementedError(model_name) if forward_is_infer: model.forward = model.infer if uniform_initialize_bn_weight: init_bn(model) return model.to(device) def get_model_config(model_name, args): """ Code chooses a model based on name""" if model_name == 'WaveGlow': model_config = dict( n_mel_channels=args.n_mel_channels, n_flows=args.flows, n_group=args.groups, n_early_every=args.early_every, n_early_size=args.early_size, WN_config=dict( n_layers=args.wn_layers, kernel_size=args.wn_kernel_size, n_channels=args.wn_channels ) ) return model_config elif model_name == 'FastPitch': model_config = dict( # io n_mel_channels=args.n_mel_channels, # symbols n_symbols=len(get_symbols(args.symbol_set)), padding_idx=get_pad_idx(args.symbol_set), symbols_embedding_dim=args.symbols_embedding_dim, # input FFT in_fft_n_layers=args.in_fft_n_layers, in_fft_n_heads=args.in_fft_n_heads, in_fft_d_head=args.in_fft_d_head, in_fft_conv1d_kernel_size=args.in_fft_conv1d_kernel_size, in_fft_conv1d_filter_size=args.in_fft_conv1d_filter_size, in_fft_output_size=args.in_fft_output_size, p_in_fft_dropout=args.p_in_fft_dropout, p_in_fft_dropatt=args.p_in_fft_dropatt, p_in_fft_dropemb=args.p_in_fft_dropemb, # output FFT out_fft_n_layers=args.out_fft_n_layers, out_fft_n_heads=args.out_fft_n_heads, out_fft_d_head=args.out_fft_d_head, out_fft_conv1d_kernel_size=args.out_fft_conv1d_kernel_size, out_fft_conv1d_filter_size=args.out_fft_conv1d_filter_size, out_fft_output_size=args.out_fft_output_size, p_out_fft_dropout=args.p_out_fft_dropout, p_out_fft_dropatt=args.p_out_fft_dropatt, p_out_fft_dropemb=args.p_out_fft_dropemb, # duration predictor dur_predictor_kernel_size=args.dur_predictor_kernel_size, dur_predictor_filter_size=args.dur_predictor_filter_size, p_dur_predictor_dropout=args.p_dur_predictor_dropout, dur_predictor_n_layers=args.dur_predictor_n_layers, # pitch predictor pitch_predictor_kernel_size=args.pitch_predictor_kernel_size, pitch_predictor_filter_size=args.pitch_predictor_filter_size, p_pitch_predictor_dropout=args.p_pitch_predictor_dropout, pitch_predictor_n_layers=args.pitch_predictor_n_layers, # pitch conditioning pitch_embedding_kernel_size=args.pitch_embedding_kernel_size, # speakers parameters n_speakers=args.n_speakers, speaker_emb_weight=args.speaker_emb_weight, # energy predictor energy_predictor_kernel_size=args.energy_predictor_kernel_size, energy_predictor_filter_size=args.energy_predictor_filter_size, p_energy_predictor_dropout=args.p_energy_predictor_dropout, energy_predictor_n_layers=args.energy_predictor_n_layers, # energy conditioning energy_conditioning=args.energy_conditioning, energy_embedding_kernel_size=args.energy_embedding_kernel_size, ) return model_config else: raise NotImplementedError(model_name)