# Copyright 2022 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf from keras_cv.layers.preprocessing.base_image_augmentation_layer import ( BaseImageAugmentationLayer, ) from keras_cv.utils import preprocessing @tf.keras.utils.register_keras_serializable(package="keras_cv") class RandomSharpness(BaseImageAugmentationLayer): """Randomly performs the sharpness operation on given images. The sharpness operation first performs a blur operation, then blends between the original image and the blurred image. This operation makes the edges of an image less sharp than they were in the original image. References: - [PIL](https://pillow.readthedocs.io/en/stable/reference/ImageEnhance.html) Args: factor: A tuple of two floats, a single float or `keras_cv.FactorSampler`. `factor` controls the extent to which the image sharpness is impacted. `factor=0.0` makes this layer perform a no-op operation, while a value of 1.0 uses the sharpened result entirely. Values between 0 and 1 result in linear interpolation between the original image and the sharpened image. Values should be between `0.0` and `1.0`. If a tuple is used, a `factor` is sampled between the two values for every image augmented. If a single float is used, a value between `0.0` and the passed float is sampled. In order to ensure the value is always the same, please pass a tuple with two identical floats: `(0.5, 0.5)`. value_range: the range of values the incoming images will have. Represented as a two number tuple written [low, high]. This is typically either `[0, 1]` or `[0, 255]` depending on how your preprocessing pipeline is setup. """ def __init__( self, factor, value_range, seed=None, **kwargs, ): super().__init__(seed=seed, **kwargs) self.value_range = value_range self.factor = preprocessing.parse_factor(factor) self.seed = seed def get_random_transformation(self, **kwargs): return self.factor() def augment_image(self, image, transformation=None, **kwargs): image = preprocessing.transform_value_range( image, original_range=self.value_range, target_range=(0, 255) ) original_image = image # Make image 4D for conv operation. image = tf.expand_dims(image, axis=0) # [1 1 1] # [1 5 1] # [1 1 1] # all divided by 13 is the default 3x3 gaussian smoothing kernel. # Correlating or Convolving with this filter is equivalent to performing a # gaussian blur. kernel = ( tf.constant( [[1, 1, 1], [1, 5, 1], [1, 1, 1]], dtype=tf.float32, shape=[3, 3, 1, 1] ) / 13.0 ) # Tile across channel dimension. channels = tf.shape(image)[-1] kernel = tf.tile(kernel, [1, 1, channels, 1]) strides = [1, 1, 1, 1] smoothed_image = tf.nn.depthwise_conv2d( image, kernel, strides, padding="VALID", dilations=[1, 1] ) smoothed_image = tf.clip_by_value(smoothed_image, 0.0, 255.0) smoothed_image = tf.squeeze(smoothed_image, axis=0) # For the borders of the resulting image, fill in the values of the # original image. mask = tf.ones_like(smoothed_image) padded_mask = tf.pad(mask, [[1, 1], [1, 1], [0, 0]]) padded_smoothed_image = tf.pad(smoothed_image, [[1, 1], [1, 1], [0, 0]]) result = tf.where( tf.equal(padded_mask, 1), padded_smoothed_image, original_image ) # Blend the final result. result = preprocessing.blend(original_image, result, transformation) result = preprocessing.transform_value_range( result, original_range=(0, 255), target_range=self.value_range ) return result def augment_bounding_boxes(self, bounding_boxes, transformation, **kwargs): return bounding_boxes def augment_label(self, label, transformation=None, **kwargs): return label def augment_segmentation_mask(self, segmentation_mask, transformation, **kwargs): return segmentation_mask def get_config(self): config = super().get_config() config.update( {"factor": self.factor, "value_range": self.value_range, "seed": self.seed} ) return config