# Copyright 2022 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf from keras_cv.layers.preprocessing.base_image_augmentation_layer import ( BaseImageAugmentationLayer, ) from keras_cv.utils import preprocessing @tf.keras.utils.register_keras_serializable(package="keras_cv") class AutoContrast(BaseImageAugmentationLayer): """Performs the AutoContrast operation on an image. Auto contrast stretches the values of an image across the entire available `value_range`. This makes differences between pixels more obvious. An example of this is if an image only has values `[0, 1]` out of the range `[0, 255]`, auto contrast will change the `1` values to be `255`. Args: value_range: the range of values the incoming images will have. Represented as a two number tuple written [low, high]. This is typically either `[0, 1]` or `[0, 255]` depending on how your preprocessing pipeline is setup. """ def __init__( self, value_range, **kwargs, ): super().__init__(**kwargs) self.value_range = value_range def augment_image(self, image, transformation=None, **kwargs): original_image = image image = preprocessing.transform_value_range( image, original_range=self.value_range, target_range=(0, 255) ) low = tf.reduce_min(tf.reduce_min(image, axis=0), axis=0) high = tf.reduce_max(tf.reduce_max(image, axis=0), axis=0) scale = 255.0 / (high - low) offset = -low * scale image = image * scale[None, None] + offset[None, None] result = tf.clip_by_value(image, 0.0, 255.0) result = preprocessing.transform_value_range( result, original_range=(0, 255), target_range=self.value_range ) # don't process NaN channels result = tf.where(tf.math.is_nan(result), original_image, result) return result def augment_bounding_boxes(self, bounding_boxes, **kwargs): return bounding_boxes def augment_label(self, label, transformation=None, **kwargs): return label def augment_segmentation_mask(self, segmentation_mask, transformation, **kwargs): return segmentation_mask def get_config(self): config = super().get_config() config.update({"value_range": self.value_range}) return config