# 简介
* Tensorflow训练Mask R-CNN模型
# 环境准备
## 1)安装工具包
* rocm3.3环境安装tensorflow1.15
* 安装pycocotools
pip3 install pycocotools -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com
* 更新pandas
pip3 install -U pandas -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com
* 安装dllogger
git clone --recursive https://github.com/NVIDIA/dllogger.git
python3 setup.py install
## 2)数据处理(train 和 val)
```
cd dataset/
git clone http://github.com/tensorflow/models tf-models
cd tf-models/research
wget -O protobuf.zip https://github.com/google/protobuf/releases/download/v3.0.0/protoc-3.0.0-linux-x86_64.zip protobuf.zip
unzip protobuf.zip
./bin/protoc object_detection/protos/.proto --python_out=.
```
返回dataset目录
vim create_coco_tf_record.py
注释掉310 316行
```
PYTHONPATH="tf-models:tf-models/research" python3 create_coco_tf_record.py \
--logtostderr \
--include_masks \
--train_image_dir=/path/to/COCO2017/images/train2017 \
--val_image_dir=/path/to/COCO2017/images/val2017 \
--train_object_annotations_file=/path/to/COCO2017/annotations/instances_train2017.json \
--val_object_annotations_file=/path/to/COCO2017/annotations/instances_val2017.json \
--train_caption_annotations_file=/path/to/COCO2017/annotations/captions_train2017.json \
--val_caption_annotations_file=/path/to/COCO2017/annotations/captions_val2017.json \
--output_dir=coco2017_tfrecord
```
生成coco2017_tfrecord文件夹
## 3)预训练模型下载
生成的模型文件结构如下:
```
weights/
>mask-rcnn/1555659850/
https://storage.googleapis.com/cloud-tpu-checkpoints/mask-rcnn/1555659850/saved_model.pb
>>variables/
https://storage.googleapis.com/cloud-tpu-checkpoints/mask-rcnn/1555659850/variables/variables.data-00000-of-00001
https://storage.googleapis.com/cloud-tpu-checkpoints/mask-rcnn/1555659850/variables/variables.index
>resnet/
>>extracted_from_maskrcnn/
>>resnet-nhwc-2018-02-07/
https://storage.googleapis.com/cloud-tpu-checkpoints/retinanet/resnet50-checkpoint-2018-02-07/checkpoint
>>>model.ckpt-112603/
https://storage.googleapis.com/cloud-tpu-checkpoints/retinanet/resnet50-checkpoint-2018-02-07/model.ckpt-112603.data-00000-of-00001
https://storage.googleapis.com/cloud-tpu-checkpoints/retinanet/resnet50-checkpoint-2018-02-07/model.ckpt-112603.index
https://storage.googleapis.com/cloud-tpu-checkpoints/retinanet/resnet50-checkpoint-2018-02-07/model.ckpt-112603.meta
>>resnet-nhwc-2018-10-14/
```
# 测试
## 单卡训练
```
python3 scripts/benchmark_training.py --gpus {1,4,8} --batch_size {2,4}
python3 scripts/benchmark_training.py --gpus 1 --batch_size 2 --model_dir save_model --data_dir /public/home/tianlh/AI-application/Tensorflow/MaskRCNN_tf2/dataset/coco2017_tfrecord --weights_dir weights
```
## 多卡训练
```
python3 scripts/benchmark_training.py --gpus 2 --batch_size 4 --model_dir save_model_2dcu --data_dir /public/home/tianlh/AI-application/Tensorflow/MaskRCNN_tf2/dataset/coco2017_tfrecord --weights_dir weights
```
## 推理
```
python3 scripts/benchmark_inference.py --batch_size 2 --model_dir save_model --data_dir /public/home/tianlh/AI-application/Tensorflow/MaskRCNN_tf2/dataset/coco2017_tfrecord --weights_dir weights
```
# 参考资料
[https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow2/Segmentation/MaskRCNN](https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow2/Segmentation/MaskRCNN)