import torch.nn as nn import seq2seq.data.config as config from seq2seq.models.decoder import ResidualRecurrentDecoder from seq2seq.models.encoder import ResidualRecurrentEncoder from seq2seq.models.seq2seq_base import Seq2Seq import torch import time class GNMT(Seq2Seq): """ GNMT v2 model """ def __init__(self, vocab_size, hidden_size=1024, num_layers=4, dropout=0.2, batch_first=False, share_embedding=True, fusion=True): """ Constructor for the GNMT v2 model. :param vocab_size: size of vocabulary (number of tokens) :param hidden_size: internal hidden size of the model :param num_layers: number of layers, applies to both encoder and decoder :param dropout: probability of dropout (in encoder and decoder) :param batch_first: if True the model uses (batch,seq,feature) tensors, if false the model uses (seq, batch, feature) :param share_embedding: if True embeddings are shared between encoder and decoder """ super(GNMT, self).__init__(batch_first=batch_first) if share_embedding: embedder = nn.Embedding(vocab_size, hidden_size, padding_idx=config.PAD) nn.init.uniform_(embedder.weight.data, -0.1, 0.1) else: embedder = None self.embedder = embedder self.encoder = ResidualRecurrentEncoder(vocab_size, hidden_size, num_layers, dropout, batch_first, embedder) self.decoder = ResidualRecurrentDecoder(vocab_size, hidden_size, num_layers, dropout, batch_first, embedder, fusion=fusion) #def forward(self, input_encoder, input_enc_len, input_decoder): # if self.embedder: # input_encoder = self.embedder(input_encoder) # input_decoder = self.embedder(input_decoder) # context = self.encode(input_encoder, input_enc_len) # input_enc_len = input_enc_len.to(input_encoder.device, non_blocking=True) # context = (context, input_enc_len, None) # output, _, _ = self.decode(input_decoder, context) # return output def forward(self, input_encoder, input_enc_len, input_decoder): if self.embedder: input_encoder = self.embedder(input_encoder) input_decoder = self.embedder(input_decoder) ##aiss add for prof time torch.cuda.synchronize() t1 = time.time() import pdb #pdb.set_trace() context = self.encode(input_encoder, input_enc_len) torch.cuda.synchronize() t2 = time.time() time.sleep(120) input_enc_len = input_enc_len.to(input_encoder.device, non_blocking=True) torch.cuda.synchronize() t5 = time.time() input_enc_len = input_enc_len.to(input_encoder.device, non_blocking=True) torch.cuda.synchronize() t6 = time.time() context = (context, input_enc_len, None) torch.cuda.synchronize() t3 = time.time() output, _, _ = self.decode(input_decoder, context) torch.cuda.synchronize() t4 = time.time() print("encode time is ",(t2 - t1)*1000) print("decode time is ",(t4 - t3)*1000) print("process time is ",(t3 - t2)*1000) print("process copy time1 is ",(t5 - t2)*1000) print("process copy time2 is ",(t6 - t5)*1000) print("process concat time is ",(t3 - t6)*1000) return output