import torch import torch.nn as nn import torch.nn.functional as F from genotypes import PRIMITIVES, STEPS, CONCAT, Genotype from torch.autograd import Variable from collections import namedtuple from model import DARTSCell, RNNModel class DARTSCellSearch(DARTSCell): def __init__(self, ninp, nhid, dropouth, dropoutx): super(DARTSCellSearch, self).__init__(ninp, nhid, dropouth, dropoutx, genotype=None) self.bn = nn.BatchNorm1d(nhid, affine=False) def cell(self, x, h_prev, x_mask, h_mask): s0 = self._compute_init_state(x, h_prev, x_mask, h_mask) s0 = self.bn(s0) probs = F.softmax(self.weights, dim=-1) offset = 0 states = s0.unsqueeze(0) for i in range(STEPS): if self.training: masked_states = states * h_mask.unsqueeze(0) else: masked_states = states ch = masked_states.view(-1, self.nhid).mm(self._Ws[i]).view(i+1, -1, 2*self.nhid) c, h = torch.split(ch, self.nhid, dim=-1) c = c.sigmoid() s = torch.zeros_like(s0) for k, name in enumerate(PRIMITIVES): if name == 'none': continue fn = self._get_activation(name) unweighted = states + c * (fn(h) - states) s += torch.sum(probs[offset:offset+i+1, k].unsqueeze(-1).unsqueeze(-1) * unweighted, dim=0) s = self.bn(s) states = torch.cat([states, s.unsqueeze(0)], 0) offset += i+1 output = torch.mean(states[-CONCAT:], dim=0) return output class RNNModelSearch(RNNModel): def __init__(self, *args): super(RNNModelSearch, self).__init__(*args, cell_cls=DARTSCellSearch, genotype=None) self._args = args self._initialize_arch_parameters() def new(self): model_new = RNNModelSearch(*self._args) for x, y in zip(model_new.arch_parameters(), self.arch_parameters()): x.data.copy_(y.data) return model_new def _initialize_arch_parameters(self): k = sum(i for i in range(1, STEPS+1)) weights_data = torch.randn(k, len(PRIMITIVES)).mul_(1e-3) self.weights = Variable(weights_data.cuda(), requires_grad=True) self._arch_parameters = [self.weights] for rnn in self.rnns: rnn.weights = self.weights def arch_parameters(self): return self._arch_parameters def _loss(self, hidden, input, target): log_prob, hidden_next = self(input, hidden, return_h=False) loss = nn.functional.nll_loss(log_prob.view(-1, log_prob.size(2)), target) return loss, hidden_next def genotype(self): def _parse(probs): gene = [] start = 0 for i in range(STEPS): end = start + i + 1 W = probs[start:end].copy() j = sorted(range(i + 1), key=lambda x: -max(W[x][k] for k in range(len(W[x])) if k != PRIMITIVES.index('none')))[0] k_best = None for k in range(len(W[j])): if k != PRIMITIVES.index('none'): if k_best is None or W[j][k] > W[j][k_best]: k_best = k gene.append((PRIMITIVES[k_best], j)) start = end return gene gene = _parse(F.softmax(self.weights, dim=-1).data.cpu().numpy()) genotype = Genotype(recurrent=gene, concat=range(STEPS+1)[-CONCAT:]) return genotype