# MMpose算例测试 ## 测试前准备 ### 数据集准备 使用dummy数据集. ### 环境部署 ```python yum install python3 yum install libquadmath yum install numactl yum install openmpi3 yum install glog yum install lmdb-libs yum install opencv-core yum install opencv yum install openblas-serial pip3 install --upgrade pip pip3 install opencv-python ``` ### 安装python依赖包 ```python pip3 install torch-1.10.0a0+gitcc7c9c7-cp36-cp36m-linux_x86_64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple pip3 install torchvision-0.10.0a0+300a8a4-cp36-cp36m-linux_x86_64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple pip3 install mmcv_full-1.3.16-cp36-cp36m-linux_x86_64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple poseval安装: cd poseval pip install -e .   mmpose安装: cd mmpose pip3 install -e . ``` 注:测试不同版本的dtk,需安装对应版本的库whl包,dtk22.04.1使用python3.7,dtk21.10.1使用python3.6 ## ResNet50-Bottom-Up测试 ### 单卡测试(单精度) ```python ./sing_test.sh configs/speed_test/bottomup_hrnet_w32_coco_512x512_dummy.py ``` 若使用dtk22.04.1测试,需设置`export MIOPEN_FIND_MODE=1,export MIOPEN_USE_APPROXIMATE_PERFORMANCE=0`以下测试均相同. #### 参数说明 configs/speed_test/bottomup_hrnet_w32_coco_512x512_dummy.py 中batch_size=samples_per_gpu*卡数,性能计算方法:batch_size/time ![1659168500714](image/train/1659168500714.png) #### 性能关注:time ### 多卡测试(单精度) ```python ./multi_test.sh configs/speed_test/bottomup_hrnet_w32_coco_512x512_dummy.py ``` ### 单卡测试(半精度) ```python ./sing_test.sh configs/speed_test/bottomup_hrnet_w32_coco_512x512_fp16_dummy.py ``` ### 多卡测试(半精度) ```python ./multi_test.sh configs/speed_test/bottomup_hrnet_w32_coco_512x512_fp16_dummy.py ``` ## ResNet50-Top-Down测试 ### 单卡测试(单精度) ```python ./sing_test.sh configs/speed_test/res50_coco_256x192_dummy.py ``` #### 参数说明 configs/speed_test/res50_coco_256x192_dummy.py 中batch_size=samples_per_gpu*卡数,性能计算方法:batch_size/time ![1659169127556](image/train/1659169127556.png) #### 性能关注:time ### 多卡测试(单精度) ```python ./multi_test.sh configs/speed_test/res50_coco_256x192_dummy.py ``` ### 单卡测试(半精度) ```python ./sing_test.sh configs/speed_test/res50_coco_256x192_fp16_dummy.py ``` ### 多卡测试(半精度) ```python ./multi_test.sh configs/speed_test/res50_coco_256x192_fp16_dummy.py ``` ## HrNet-Top-Down测试 ### 单卡测试(单精度) ```python ./sing_test.sh configs/speed_test/hrnet_w32_coco_256x192_dummy.py ``` #### 参数说明 configs/speed_test/hrnet_w32_coco_256x192_dummy.py 中batch_size=samples_per_gpu*卡数,性能计算方法:batch_size/time ![1659169253165](image/train/1659169253165.png) #### 性能关注:time ### 多卡测试(单精度) ```python ./multi_test.sh configs/speed_test/hrnet_w32_coco_256x192_dummy.py ``` ### 单卡测试(半精度) ```python ./sing_test.sh configs/speed_test/hrnet_w32_coco_256x192_fp16_dummy.py ``` ### 多卡测试(半精度) ```python ./multi_test.sh configs/speed_test/hrnet_w32_coco_256x192_fp16_dummy.py ```