# Copyright 2022 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf from keras_cv.ops.box_matcher import ArgmaxBoxMatcher class ArgmaxBoxMatcherTest(tf.test.TestCase): def test_box_matcher_invalid_length(self): fg_threshold = 0.5 bg_thresh_hi = 0.2 bg_thresh_lo = 0.0 with self.assertRaisesRegex(ValueError, "must be len"): _ = ArgmaxBoxMatcher( thresholds=[bg_thresh_lo, bg_thresh_hi, fg_threshold], match_values=[-3, -2, -1], ) def test_box_matcher_unsorted_thresholds(self): fg_threshold = 0.5 bg_thresh_hi = 0.2 bg_thresh_lo = 0.0 with self.assertRaisesRegex(ValueError, "must be sorted"): _ = ArgmaxBoxMatcher( thresholds=[bg_thresh_hi, bg_thresh_lo, fg_threshold], match_values=[-3, -2, -1, 1], ) def test_box_matcher_unbatched(self): sim_matrix = tf.constant([[0.04, 0, 0, 0], [0, 0, 1.0, 0]], dtype=tf.float32) fg_threshold = 0.5 bg_thresh_hi = 0.2 bg_thresh_lo = 0.0 matcher = ArgmaxBoxMatcher( thresholds=[bg_thresh_lo, bg_thresh_hi, fg_threshold], match_values=[-3, -2, -1, 1], ) match_indices, matched_values = matcher(sim_matrix) positive_matches = tf.greater_equal(matched_values, 0) negative_matches = tf.equal(matched_values, -2) self.assertAllEqual(positive_matches.numpy(), [False, True]) self.assertAllEqual(negative_matches.numpy(), [True, False]) self.assertAllEqual(match_indices.numpy(), [0, 2]) self.assertAllEqual(matched_values.numpy(), [-2, 1]) def test_box_matcher_batched(self): sim_matrix = tf.constant([[[0.04, 0, 0, 0], [0, 0, 1.0, 0]]], dtype=tf.float32) fg_threshold = 0.5 bg_thresh_hi = 0.2 bg_thresh_lo = 0.0 matcher = ArgmaxBoxMatcher( thresholds=[bg_thresh_lo, bg_thresh_hi, fg_threshold], match_values=[-3, -2, -1, 1], ) match_indices, matched_values = matcher(sim_matrix) positive_matches = tf.greater_equal(matched_values, 0) negative_matches = tf.equal(matched_values, -2) self.assertAllEqual(positive_matches.numpy(), [[False, True]]) self.assertAllEqual(negative_matches.numpy(), [[True, False]]) self.assertAllEqual(match_indices.numpy(), [[0, 2]]) self.assertAllEqual(matched_values.numpy(), [[-2, 1]]) def test_box_matcher_force_match(self): sim_matrix = tf.constant( [[0, 0.04, 0, 0.1], [0, 0, 1.0, 0], [0.1, 0, 0, 0], [0, 0, 0, 0.6]], dtype=tf.float32, ) fg_threshold = 0.5 bg_thresh_hi = 0.2 bg_thresh_lo = 0.0 matcher = ArgmaxBoxMatcher( thresholds=[bg_thresh_lo, bg_thresh_hi, fg_threshold], match_values=[-3, -2, -1, 1], force_match_for_each_col=True, ) match_indices, matched_values = matcher(sim_matrix) positive_matches = tf.greater_equal(matched_values, 0) negative_matches = tf.equal(matched_values, -2) self.assertAllEqual(positive_matches.numpy(), [True, True, True, True]) self.assertAllEqual(negative_matches.numpy(), [False, False, False, False]) # the first anchor cannot be matched to 4th gt box given that is matched to # the last anchor. self.assertAllEqual(match_indices.numpy(), [1, 2, 0, 3]) self.assertAllEqual(matched_values.numpy(), [1, 1, 1, 1]) def test_box_matcher_empty_gt_boxes(self): sim_matrix = tf.constant([[], []], dtype=tf.float32) fg_threshold = 0.5 bg_thresh_hi = 0.2 bg_thresh_lo = 0.0 matcher = ArgmaxBoxMatcher( thresholds=[bg_thresh_lo, bg_thresh_hi, fg_threshold], match_values=[-3, -2, -1, 1], ) match_indices, matched_values = matcher(sim_matrix) positive_matches = tf.greater_equal(matched_values, 0) ignore_matches = tf.equal(matched_values, -1) self.assertAllEqual(positive_matches.numpy(), [False, False]) self.assertAllEqual(ignore_matches.numpy(), [True, True]) self.assertAllEqual(match_indices.numpy(), [0, 0]) self.assertAllEqual(matched_values.numpy(), [-1, -1])