# Copyright 2022 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf from absl.testing import parameterized from keras_cv.models import efficientnet_v2 from .models_test import ModelsTest MODEL_LIST = [ (efficientnet_v2.EfficientNetV2B0, 1280, {}), (efficientnet_v2.EfficientNetV2B1, 1280, {}), (efficientnet_v2.EfficientNetV2B2, 1408, {}), (efficientnet_v2.EfficientNetV2B3, 1536, {}), (efficientnet_v2.EfficientNetV2S, 1280, {}), (efficientnet_v2.EfficientNetV2M, 1280, {}), (efficientnet_v2.EfficientNetV2L, 1280, {}), ] class EfficientNetV2Test(ModelsTest, tf.test.TestCase, parameterized.TestCase): @parameterized.parameters(*MODEL_LIST) def test_application_base(self, app, _, args): super()._test_application_base(app, _, args) @parameterized.parameters(*MODEL_LIST) def test_application_with_rescaling(self, app, last_dim, args): super()._test_application_with_rescaling(app, last_dim, args) @parameterized.parameters(*MODEL_LIST) def test_application_pooling(self, app, last_dim, args): super()._test_application_pooling(app, last_dim, args) @parameterized.parameters(*MODEL_LIST) def test_application_variable_input_channels(self, app, last_dim, args): super()._test_application_variable_input_channels(app, last_dim, args) @parameterized.parameters(*MODEL_LIST) def test_model_can_be_used_as_backbone(self, app, last_dim, args): super()._test_model_can_be_used_as_backbone(app, last_dim, args) if __name__ == "__main__": tf.test.main()