# Copyright 2022 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf from absl.testing import parameterized from keras_cv.layers.preprocessing.solarization import Solarization class SolarizationTest(tf.test.TestCase, parameterized.TestCase): @parameterized.named_parameters( ("0_255", 0, 255), ("64_191", 64, 191), ("127_128", 127, 128), ("191_64", 191, 64), ("255_0", 255, 0), ) def test_output_values(self, input_value, expected_value): solarization = Solarization(value_range=(0, 255)) self._test_input_output( layer=solarization, input_value=input_value, expected_value=expected_value, dtype=tf.uint8, ) @parameterized.named_parameters( ("0_245", 0, 245), ("255_0", 255, 0), ) def test_solarization_with_addition(self, input_value, output_value): solarization = Solarization(addition_factor=(10.0, 10.0), value_range=(0, 255)) self._test_input_output( layer=solarization, input_value=input_value, expected_value=output_value, dtype=tf.float32, ) @parameterized.named_parameters( ("0_0", 0, 0), ("64_64", 64, 64), ("127_127", 127, 127), ("191_64", 191, 64), ("255_0", 255, 0), ) def test_only_values_above_threshold_are_solarized(self, input_value, output_value): solarization = Solarization(threshold_factor=(128, 128), value_range=(0, 255)) self._test_input_output( layer=solarization, input_value=input_value, expected_value=output_value, dtype=tf.uint8, ) def _test_input_output(self, layer, input_value, expected_value, dtype): input = tf.ones(shape=(2, 224, 224, 3), dtype=dtype) * input_value expected_output = tf.clip_by_value( ( tf.ones(shape=(2, 224, 224, 3), dtype=layer.compute_dtype) * expected_value ), 0, 255, ) output = layer(input) self.assertAllClose(output, expected_output)