# Copyright 2022 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf from absl.testing import parameterized from keras_cv.layers.preprocessing.equalization import Equalization class EqualizationTest(tf.test.TestCase, parameterized.TestCase): def test_return_shapes(self): xs = 255 * tf.ones((2, 512, 512, 3), dtype=tf.int32) layer = Equalization(value_range=(0, 255)) xs = layer(xs) self.assertEqual(xs.shape, [2, 512, 512, 3]) self.assertAllEqual(xs, 255 * tf.ones((2, 512, 512, 3))) def test_return_shapes_inside_model(self): layer = Equalization(value_range=(0, 255)) inp = tf.keras.layers.Input(shape=[512, 512, 5]) out = layer(inp) model = tf.keras.models.Model(inp, out) self.assertEqual(model.layers[-1].output_shape, (None, 512, 512, 5)) def test_equalizes_to_all_bins(self): xs = tf.random.uniform((2, 512, 512, 3), 0, 255, dtype=tf.float32) layer = Equalization(value_range=(0, 255)) xs = layer(xs) for i in range(0, 256): self.assertTrue(tf.math.reduce_any(xs == i)) @parameterized.named_parameters( ("float32", tf.float32), ("int32", tf.int32), ("int64", tf.int64) ) def test_input_dtypes(self, dtype): xs = tf.random.uniform((2, 512, 512, 3), 0, 255, dtype=dtype) layer = Equalization(value_range=(0, 255)) xs = layer(xs) for i in range(0, 256): self.assertTrue(tf.math.reduce_any(xs == i)) self.assertAllInRange(xs, 0, 255) @parameterized.named_parameters(("0_255", 0, 255), ("0_1", 0, 1)) def test_output_range(self, lower, upper): xs = tf.random.uniform((2, 512, 512, 3), lower, upper, dtype=tf.float32) layer = Equalization(value_range=(lower, upper)) xs = layer(xs) self.assertAllInRange(xs, lower, upper)