# Copyright 2022 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf from keras_cv.layers import preprocessing class AugmenterTest(tf.test.TestCase): def test_return_shapes(self): input = tf.ones((2, 512, 512, 3)) layer = preprocessing.Augmenter( [ preprocessing.Grayscale( output_channels=1, ), preprocessing.RandomCropAndResize( target_size=(100, 100), crop_area_factor=(1, 1), aspect_ratio_factor=(1, 1), ), ] ) output = layer(input, training=True) self.assertEqual(output.shape, [2, 100, 100, 1]) def test_in_tf_function(self): input = tf.ones((2, 512, 512, 3)) layer = preprocessing.Augmenter( [ preprocessing.Grayscale( output_channels=1, ), preprocessing.RandomCropAndResize( target_size=(100, 100), crop_area_factor=(1, 1), aspect_ratio_factor=(1, 1), ), ] ) @tf.function def augment(x): return layer(x, training=True) output = augment(input) self.assertEqual(output.shape, [2, 100, 100, 1])