Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
dcuai
dlexamples
Commits
dcd2aabd
Commit
dcd2aabd
authored
Jan 14, 2023
by
unknown
Browse files
修改 mmpose-0.28.1 train.md
parent
692db38b
Changes
4
Show whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
47 additions
and
70 deletions
+47
-70
openmmlab_test/mmclassification-0.24.1/train.md
openmmlab_test/mmclassification-0.24.1/train.md
+3
-3
openmmlab_test/mmdetection-2.25.2/train.md
openmmlab_test/mmdetection-2.25.2/train.md
+3
-3
openmmlab_test/mmpose-0.28.1/README.md
openmmlab_test/mmpose-0.28.1/README.md
+1
-1
openmmlab_test/mmpose-0.28.1/train.md
openmmlab_test/mmpose-0.28.1/train.md
+40
-63
No files found.
openmmlab_test/mmclassification-0.24.1/train.md
View file @
dcd2aabd
...
...
@@ -55,7 +55,7 @@ configs/_base_/datasets/imagenet_bs32.py 中batch_size=samples_per_gpu*卡数,
1.
pytorch单机多卡训练
```
python
.
/
tools
/
dist_train
.
sh
configs
/
resnet
/
resnet18_b32x8_imagenet
.
py
.
/
tools
/
dist_train
.
sh
configs
/
resnet
/
resnet18_b32x8_imagenet
.
py
$
GPUS
```
2.
mpirun单机多卡训练
mpirun --allow-run-as-root --bind-to none -np 4 single_process.sh a03r3n15
...
...
@@ -65,9 +65,9 @@ a03r3n15为master节点ip
1.
pytorch多机多卡训练
在第一台机器上:
NODES=2 NODE_RANK=0 PORT=12345 MASTER_ADDR=10.1.3.56 sh tools/dist_train.sh configs/resnet/resnet18_b32x8_imagenet.py
4
NODES=2 NODE_RANK=0 PORT=12345 MASTER_ADDR=10.1.3.56 sh tools/dist_train.sh configs/resnet/resnet18_b32x8_imagenet.py
$GPUS
在第二台机器上:
NODES=2 NODE_RANK=1 PORT=12345 MASTER_ADDR=10.1.3.56 sh tools/dist_train.sh configs/resnet/resnet18_b32x8_imagenet.py
4
NODES=2 NODE_RANK=1 PORT=12345 MASTER_ADDR=10.1.3.56 sh tools/dist_train.sh configs/resnet/resnet18_b32x8_imagenet.py
$GPUS
2.
mpirun多机多卡训练
mpirun --allow-run-as-root --hostfile hostfile --bind-to none -np 4 single_process.sh a03r3n15
...
...
openmmlab_test/mmdetection-2.25.2/train.md
View file @
dcd2aabd
...
...
@@ -74,7 +74,7 @@ configs/_base_/datasets/coco_detection.py 中batch_size=samples_per_gpu*卡数,
```
python
.
/
tools
/
dist_train
.
sh
configs
/
faster_rcnn
/
faster_rcnn_r50_fpn_1x_coco
.
py
.
/
tools
/
dist_train
.
sh
configs
/
faster_rcnn
/
faster_rcnn_r50_fpn_1x_coco
.
py
$
GPUS
```
...
...
@@ -84,11 +84,11 @@ configs/_base_/datasets/coco_detection.py 中batch_size=samples_per_gpu*卡数,
在第一台机器上:
NODES=2 NODE_RANK=0 PORT=12345 MASTER_ADDR=10.1.3.56 sh tools/dist_train.sh configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py
4
NODES=2 NODE_RANK=0 PORT=12345 MASTER_ADDR=10.1.3.56 sh tools/dist_train.sh configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py
$GPUS
在第二台机器上:
NODES=2 NODE_RANK=1 PORT=12345 MASTER_ADDR=10.1.3.56 sh tools/dist_train.sh configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py
4
NODES=2 NODE_RANK=1 PORT=12345 MASTER_ADDR=10.1.3.56 sh tools/dist_train.sh configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py
$GPUS
### 半精度测试
...
...
openmmlab_test/mmpose-0.28.1/README.md
View file @
dcd2aabd
...
...
@@ -37,7 +37,7 @@
<div
align=
"center"
>
English |
[
简体中文
](
README_CN.md
)
English |
[
简体中文
](
README_CN.md
)
|
[
模型测试步骤
](
train.md
)
</div>
...
...
openmmlab_test/mmpose-0.28.1/train.md
View file @
dcd2aabd
...
...
@@ -2,7 +2,7 @@
## 测试前准备
### 数据集准备
使用
dummy
数据集.
使用
COCO2017
数据集.
### 环境部署
```
python
yum
install
python3
...
...
@@ -19,79 +19,56 @@ pip3 install opencv-python
```
### 安装python依赖包
```
python
pip3
install
torch
-
1.10
.
0
a0
+
git
cc7c9c7
-
cp3
6
-
cp3
6
m
-
linux_x86_64
.
whl
-
i
https
:
//
pypi
.
tuna
.
tsinghua
.
edu
.
cn
/
simple
pip3
install
torchvision
-
0.10
.
0
a0
+
300
a8a4
-
cp3
6
-
cp3
6
m
-
linux_x86_64
.
whl
-
i
https
:
//
pypi
.
tuna
.
tsinghua
.
edu
.
cn
/
simple
pip3
install
mmcv_full
-
1.
3
.
1
6
-
cp3
6
-
cp3
6
m
-
linux_x86_64
.
whl
-
i
https
:
//
pypi
.
tuna
.
tsinghua
.
edu
.
cn
/
simple
pip3
install
torch
-
1.10
.
0
a0
+
git
2040069
.
dtk2210
-
cp3
7
-
cp3
7
m
-
many
linux
2014
_x86_64
.
whl
-
i
https
:
//
pypi
.
tuna
.
tsinghua
.
edu
.
cn
/
simple
pip3
install
torchvision
-
0.10
.
0
a0
+
e04d001
.
dtk2210
-
cp3
7
-
cp3
7
m
-
many
linux
2014
_x86_64
.
whl
-
i
https
:
//
pypi
.
tuna
.
tsinghua
.
edu
.
cn
/
simple
pip3
install
mmcv_full
-
1.
6
.
1
+
gitdebbc80
.
dtk2210
-
cp3
7
-
cp3
7
m
-
many
linux
2014
_x86_64
.
whl
-
i
https
:
//
pypi
.
tuna
.
tsinghua
.
edu
.
cn
/
simple
poseval安装
:
cd
poseval
pip
install
-
e
.
mmpose安装
:
cd
mmpose
cd
mmpose
-
0.28
.
1
pip3
install
-
e
.
```
注:测试不同版本的dtk,需安装对应版本的库whl包
,dtk22.04.1使用python3.7,dtk21.10.1使用python3.6
注:测试不同版本的dtk,需安装对应版本的库whl包
.
## ResNet50-Bottom-Up测试
### 单卡测试(单精度)
```
python
.
/
sing_test
.
sh
configs
/
speed_test
/
bottomup_hrnet_w32_coco_512x51
2_dummy
.
py
.
/
sing_test
.
sh
configs
/
body
/
2
d_kpt_sview_rgb_img
/
res50_coco_256x19
2_dummy
.
py
```
若使用dtk22.04.1测试,需设置
`export MIOPEN_FIND_MODE=1,export MIOPEN_USE_APPROXIMATE_PERFORMANCE=0`
以下测试均相同.
#### 参数说明
configs/speed_test/bottomup_hrnet_w32_coco_512x512_dummy.py 中batch_size=samples_per_gpu
*
卡数,性能计算方法:batch_size/time

configs/body/2d_kpt_sview_rgb_img/res50_coco_256x192_dummy.py 中batch_size=samples_per_gpu
*
卡数,性能计算方法:batch_size/time
#### 性能关注:time
### 多卡测试(单精度)
```
python
.
/
multi_test
.
sh
configs
/
speed_test
/
bottomup_hrnet_w32_coco_512x512_dummy
.
py
```
### 单卡测试(半精度)
```
python
.
/
sing_test
.
sh
configs
/
speed_test
/
bottomup_hrnet_w32_coco_512x512_fp16_dummy
.
py
```
### 多卡测试(半精度)
```
python
.
/
multi_test
.
sh
configs
/
speed_test
/
bottomup_hrnet_w32_coco_512x512_fp16_dummy
.
py
```
## ResNet50-Top-Down测试
### 单卡测试(单精度)
```
python
.
/
sing_test
.
sh
configs
/
speed_test
/
res50_coco_256x192_dummy
.
py
```
#### 参数说明
configs/speed_test/res50_coco_256x192_dummy.py 中batch_size=samples_per_gpu
*
卡数,性能计算方法:batch_size/time

#### 性能关注:time
### 多卡测试(单精度)
```
python
.
/
multi_test
.
sh
configs
/
speed_test
/
res50_coco_256x192_dummy
.
py
```
### 单卡测试(半精度)
```
python
.
/
sing_test
.
sh
configs
/
speed_test
/
res50_coco_256x192_fp16_dummy
.
py
```
### 多卡测试(半精度)
```
python
.
/
multi_test
.
sh
configs
/
speed_test
/
res50_coco_256x192_fp16_dummy
.
py
```
## HrNet-Top-Down测试
### 单卡测试(单精度)
```
python
.
/
sing_test
.
sh
configs
/
speed_test
/
hrnet_w32_coco_256x192_dummy
.
py
```
#### 参数说明
configs/speed_test/hrnet_w32_coco_256x192_dummy.py 中batch_size=samples_per_gpu
*
卡数,性能计算方法:batch_size/time

#### 性能关注:time
### 多卡测试(单精度)
```
python
.
/
multi_test
.
sh
configs
/
speed_test
/
hrnet_w32_coco_256x192_dummy
.
py
```
### 单卡测试(半精度)
```
python
.
/
sing_test
.
sh
configs
/
speed_test
/
hrnet_w32_coco_256x192_fp16_dummy
.
py
```
### 多卡测试(半精度)
#### 单机多卡训练
1.
pytorch单机多卡训练
```
python
.
/
multi_test
.
sh
configs
/
speed_test
/
hrnet_w32
_coco_256x192_
fp16_
dummy
.
py
.
/
tools
/
dist_train
.
sh
configs
/
body
/
2
d_kpt_sview_rgb_img
/
res50
_coco_256x192_dummy
.
py
$
GPUS
```
#### 多机多卡训练
1.
pytorch多机多卡训练
在第一台机器上:
NODES=$NNODES NODE_RANK=$NODE_RANK PORT=$PORT MASTER_ADDR=$MASTER_ADDR sh tools/dist_train.sh configs/body/2d_kpt_sview_rgb_img/res50_coco_256x192_dummy.py $GPUS
在第二台机器上:
NODES=$NNODES NODE_RANK=$NODE_RANK PORT=$PORT MASTER_ADDR=$MASTER_ADDR sh tools/dist_train.sh configs/body/2d_kpt_sview_rgb_img/res50_coco_256x192_dummy.py $GPUS
### 半精度测试
修改configs文件,添加fp16 = dict(loss_scale=512.),单机多卡和多机多卡测试与单精度测试方法相同。
### 其他模型测试
其他模型的测试步骤和ResNet50-Bottom-Up相同,只需修改对应的config文件即可,下面列出相关模型对应的config文件列表:
| 模型 | configs |
| ------------------ | ------------------------------------------------------------ |
| ResNet50-Top-Down | configs/body/2d_kpt_sview_rgb_img/res50_coco_256x192_dummy.py |
| HrNet-Top-Down | configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/hrnet_w32_coco_256x192.py |
| ResNet50-Bottom-Up | configs/body/2d_kpt_sview_rgb_img/associative_embedding/coco/hrnet_w32_coco_512x512.py |
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment