* It must be a **bug**, a **feature request**, or a significant problem
with **documentation**.
* Please send a pull request instead for small documentation fixes.
* The required form must be filled out.
* The issue should be related to the repository it is created in.
General help and support should be sought on [Stack Overflow](https://stackoverflow.com/questions/tagged/tensorflow-model-garden) or other non-GitHub channels.
The TensorFlow Model Garden is a repository with a number of different
implementations of state-of-the-art (SOTA) models and modeling solutions for
TensorFlow users. We aim to demonstrate the best practices for modeling so that
TensorFlow users can take full advantage of TensorFlow for their research and
product development.
To improve the transparency and reproducibility of our models, training logs on
[TensorBoard.dev](https://tensorboard.dev) are also provided for models to the
extent possible though not all models are suitable.
| Directory | Description |
|-----------|-------------|
| [official](official) | • A collection of example implementations for SOTA models using the latest TensorFlow 2's high-level APIs<br/>• Officially maintained, supported, and kept up to date with the latest TensorFlow 2 APIs by TensorFlow<br/>• Reasonably optimized for fast performance while still being easy to read |
| [research](research) | • A collection of research model implementations in TensorFlow 1 or 2 by researchers<br/>• Maintained and supported by researchers |
| [community](community) | • A curated list of the GitHub repositories with machine learning models and implementations powered by TensorFlow 2 |
| [orbit](orbit) | • A flexible and lightweight library that users can easily use or fork when writing customized training loop code in TensorFlow 2.x. It seamlessly integrates with `tf.distribute` and supports running on different device types (CPU, GPU, and TPU). |
| [SSD-ResNet34](https://github.com/IntelAI/models/tree/master/benchmarks/object_detection/tensorflow/ssd-resnet34) | [SSD: Single Shot MultiBox Detector](https://arxiv.org/pdf/1512.02325) | • Int8 Inference<br/>• FP32 Inference<br/>• FP32 Training | [Intel](https://github.com/IntelAI) |
### Segmentation
| Model | Paper | Features | Maintainer |
|-------|-------|----------|------------|
| [Mask R-CNN](https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow2/Segmentation/MaskRCNN) | [Mask R-CNN](https://arxiv.org/abs/1703.06870) | • Automatic Mixed Precision<br/>• Multi-GPU training support with Horovod<br/>• TensorRT | [NVIDIA](https://github.com/NVIDIA) |
| [U-Net Medical Image Segmentation](https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow2/Segmentation/UNet_Medical) | [U-Net: Convolutional Networks for Biomedical Image Segmentation](https://arxiv.org/abs/1505.04597) | • Automatic Mixed Precision<br/>• Multi-GPU training support with Horovod<br/>• TensorRT | [NVIDIA](https://github.com/NVIDIA) |
## Natural Language Processing
| Model | Paper | Features | Maintainer |
|-------|-------|----------|------------|
| [BERT](https://github.com/IntelAI/models/tree/master/benchmarks/language_modeling/tensorflow/bert_large) | [BERT: Pre-training of Deep Bidirectional Transformers<br/>for Language Understanding](https://arxiv.org/pdf/1810.04805) | • FP32 Inference<br/>• FP32 Training | [Intel](https://github.com/IntelAI) |
| [BERT](https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow2/LanguageModeling/BERT) | [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/pdf/1810.04805) | • Horovod Multi-GPU<br/>• Multi-node with Horovod and Pyxis/Enroot Slurm cluster<br/>• XLA<br/>• Automatic mixed precision<br/>• LAMB | [NVIDIA](https://github.com/NVIDIA) |
| [ELECTRA](https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow2/LanguageModeling/ELECTRA) | [ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators](https://openreview.net/forum?id=r1xMH1BtvB) | • Automatic Mixed Precision<br/>• Multi-GPU training support with Horovod<br/>• Multi-node training on a Pyxis/Enroot Slurm cluster | [NVIDIA](https://github.com/NVIDIA) |
| [GNMT](https://github.com/IntelAI/models/tree/master/benchmarks/language_translation/tensorflow/mlperf_gnmt) | [Google’s Neural Machine Translation System:<br/>Bridging the Gap between Human and Machine Translation](https://arxiv.org/pdf/1609.08144) | • FP32 Inference | [Intel](https://github.com/IntelAI) |
| [Transformer-LT (Official)](https://github.com/IntelAI/models/tree/master/benchmarks/language_translation/tensorflow/transformer_lt_official) | [Attention Is All You Need](https://arxiv.org/pdf/1706.03762) | • FP32 Inference | [Intel](https://github.com/IntelAI) |
| [Transformer-LT (MLPerf)](https://github.com/IntelAI/models/tree/master/benchmarks/language_translation/tensorflow/transformer_mlperf) | [Attention Is All You Need](https://arxiv.org/pdf/1706.03762) | • FP32 Training | [Intel](https://github.com/IntelAI) |
## Recommendation Systems
| Model | Paper | Features | Maintainer |
|-------|-------|----------|------------|
| [Wide & Deep](https://github.com/IntelAI/models/tree/master/benchmarks/recommendation/tensorflow/wide_deep_large_ds) | [Wide & Deep Learning for Recommender Systems](https://arxiv.org/pdf/1606.07792) | • FP32 Inference<br/>• FP32 Training | [Intel](https://github.com/IntelAI) |
| [Wide & Deep](https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow2/Recommendation/WideAndDeep) | [Wide & Deep Learning for Recommender Systems](https://arxiv.org/pdf/1606.07792) | • Automatic mixed precision<br/>• Multi-GPU training support with Horovod<br/>• XLA | [NVIDIA](https://github.com/NVIDIA) |
| [DLRM](https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow2/Recommendation/DLRM) | [Deep Learning Recommendation Model for Personalization and Recommendation Systems](https://arxiv.org/pdf/1906.00091.pdf) | • Automatic Mixed Precision<br/>• Hybrid-parallel multiGPU training using Horovod all2all<br/>• Multinode training for Pyxis/Enroot Slurm clusters<br/>• XLA<br/>• Criteo dataset preprocessing with Spark on GPU | [NVIDIA](https://github.com/NVIDIA) |
## Contributions
If you want to contribute, please review the [contribution guidelines](https://github.com/tensorflow/models/wiki/How-to-contribute).
# Offically Supported TensorFlow 2.1+ Models on Cloud TPU
## Natural Language Processing
*[bert](nlp/bert): A powerful pre-trained language representation model:
BERT, which stands for Bidirectional Encoder Representations from
Transformers.
[BERT FineTuning with Cloud TPU](https://cloud.google.com/tpu/docs/tutorials/bert-2.x) provides step by step instructions on Cloud TPU training. You can look [Bert MNLI Tensorboard.dev metrics](https://tensorboard.dev/experiment/LijZ1IrERxKALQfr76gndA) for MNLI fine tuning task.
*[transformer](nlp/transformer): A transformer model to translate the WMT
English to German dataset.
[Training transformer on Cloud TPU](https://cloud.google.com/tpu/docs/tutorials/transformer-2.x) for step by step instructions on Cloud TPU training.
## Computer Vision
*[efficientnet](vision/image_classification): A family of convolutional
neural networks that scale by balancing network depth, width, and
resolution and can be used to classify ImageNet's dataset of 1000 classes.
See [Tensorboard.dev training metrics](https://tensorboard.dev/experiment/KnaWjrq5TXGfv0NW5m7rpg/#scalars).
*[mnist](vision/image_classification): A basic model to classify digits
from the MNIST dataset. See [Running MNIST on Cloud TPU](https://cloud.google.com/tpu/docs/tutorials/mnist-2.x) tutorial and [Tensorboard.dev metrics](https://tensorboard.dev/experiment/mIah5lppTASvrHqWrdr6NA).
*[mask-rcnn](vision/detection): An object detection and instance segmentation model. See [Tensorboard.dev training metrics](https://tensorboard.dev/experiment/LH7k0fMsRwqUAcE09o9kPA).
*[resnet](vision/image_classification): A deep residual network that can
be used to classify ImageNet's dataset of 1000 classes.
See [Training ResNet on Cloud TPU](https://cloud.google.com/tpu/docs/tutorials/resnet-2.x) tutorial and [Tensorboard.dev metrics](https://tensorboard.dev/experiment/CxlDK8YMRrSpYEGtBRpOhg).
*[retinanet](vision/detection): A fast and powerful object detector. See [Tensorboard.dev training metrics](https://tensorboard.dev/experiment/b8NRnWU3TqG6Rw0UxueU6Q).
*[shapemask](vision/detection): An object detection and instance segmentation model using shape priors. See [Tensorboard.dev training metrics](https://tensorboard.dev/experiment/ZbXgVoc6Rf6mBRlPj0JpLA).
## Recommendation
*[dlrm](recommendation/ranking): [Deep Learning Recommendation Model for
Personalization and Recommendation Systems](https://arxiv.org/abs/1906.00091).
*[dcn v2](recommendation/ranking): [Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems](https://arxiv.org/abs/2008.13535).
*[ncf](recommendation): Neural Collaborative Filtering. See [Tensorboard.dev training metrics](https://tensorboard.dev/experiment/0k3gKjZlR1ewkVTRyLB6IQ).
| [ShapeMask](vision/detection) | [ShapeMask: Learning to Segment Novel Objects by Refining Shape Priors](https://arxiv.org/abs/1904.03239) |
| [SpineNet](vision/beta/MODEL_GARDEN.md) | [SpineNet: Learning Scale-Permuted Backbone for Recognition and Localization](https://arxiv.org/abs/1912.05027) |
| [Cascade RCNN-RS and RetinaNet-RS](vision/beta/MODEL_GARDEN.md) | [Simple Training Strategies and Model Scaling for Object Detection](https://arxiv.org/abs/2107.00057)|
### Natural Language Processing
| Model | Reference (Paper) |
|-------|-------------------|
| [ALBERT (A Lite BERT)](nlp/albert) | [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942) |
| [BERT (Bidirectional Encoder Representations from Transformers)](nlp/bert) | [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) |
[DLRM](recommendation/ranking) | [Deep Learning Recommendation Model for Personalization and Recommendation Systems](https://arxiv.org/abs/1906.00091)
[DCN v2](recommendation/ranking) | [Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems](https://arxiv.org/abs/2008.13535)