Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
dcuai
dlexamples
Commits
c0f05c10
Commit
c0f05c10
authored
Nov 29, 2022
by
hepj
Browse files
更新transformer代码
parent
c056df78
Changes
321
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
5112 additions
and
0 deletions
+5112
-0
PyTorch/NLP/new-Transformer/fairseq/data/iterators.py
PyTorch/NLP/new-Transformer/fairseq/data/iterators.py
+821
-0
PyTorch/NLP/new-Transformer/fairseq/data/language_pair_dataset.py
...NLP/new-Transformer/fairseq/data/language_pair_dataset.py
+477
-0
PyTorch/NLP/new-Transformer/fairseq/data/legacy/__init__.py
PyTorch/NLP/new-Transformer/fairseq/data/legacy/__init__.py
+16
-0
PyTorch/NLP/new-Transformer/fairseq/data/legacy/block_pair_dataset.py
...new-Transformer/fairseq/data/legacy/block_pair_dataset.py
+311
-0
PyTorch/NLP/new-Transformer/fairseq/data/legacy/masked_lm_dataset.py
.../new-Transformer/fairseq/data/legacy/masked_lm_dataset.py
+303
-0
PyTorch/NLP/new-Transformer/fairseq/data/legacy/masked_lm_dictionary.py
...w-Transformer/fairseq/data/legacy/masked_lm_dictionary.py
+60
-0
PyTorch/NLP/new-Transformer/fairseq/data/list_dataset.py
PyTorch/NLP/new-Transformer/fairseq/data/list_dataset.py
+32
-0
PyTorch/NLP/new-Transformer/fairseq/data/lm_context_window_dataset.py
...new-Transformer/fairseq/data/lm_context_window_dataset.py
+97
-0
PyTorch/NLP/new-Transformer/fairseq/data/lru_cache_dataset.py
...rch/NLP/new-Transformer/fairseq/data/lru_cache_dataset.py
+21
-0
PyTorch/NLP/new-Transformer/fairseq/data/mask_tokens_dataset.py
...h/NLP/new-Transformer/fairseq/data/mask_tokens_dataset.py
+220
-0
PyTorch/NLP/new-Transformer/fairseq/data/monolingual_dataset.py
...h/NLP/new-Transformer/fairseq/data/monolingual_dataset.py
+253
-0
PyTorch/NLP/new-Transformer/fairseq/data/multi_corpus_dataset.py
.../NLP/new-Transformer/fairseq/data/multi_corpus_dataset.py
+256
-0
PyTorch/NLP/new-Transformer/fairseq/data/multi_corpus_sampled_dataset.py
...-Transformer/fairseq/data/multi_corpus_sampled_dataset.py
+152
-0
PyTorch/NLP/new-Transformer/fairseq/data/multilingual/__init__.py
...NLP/new-Transformer/fairseq/data/multilingual/__init__.py
+4
-0
PyTorch/NLP/new-Transformer/fairseq/data/multilingual/multilingual_data_manager.py
...er/fairseq/data/multilingual/multilingual_data_manager.py
+1156
-0
PyTorch/NLP/new-Transformer/fairseq/data/multilingual/multilingual_utils.py
...ansformer/fairseq/data/multilingual/multilingual_utils.py
+63
-0
PyTorch/NLP/new-Transformer/fairseq/data/multilingual/sampled_multi_dataset.py
...former/fairseq/data/multilingual/sampled_multi_dataset.py
+468
-0
PyTorch/NLP/new-Transformer/fairseq/data/multilingual/sampled_multi_epoch_dataset.py
.../fairseq/data/multilingual/sampled_multi_epoch_dataset.py
+199
-0
PyTorch/NLP/new-Transformer/fairseq/data/multilingual/sampling_method.py
...-Transformer/fairseq/data/multilingual/sampling_method.py
+78
-0
PyTorch/NLP/new-Transformer/fairseq/data/nested_dictionary_dataset.py
...new-Transformer/fairseq/data/nested_dictionary_dataset.py
+125
-0
No files found.
Too many changes to show.
To preserve performance only
321 of 321+
files are displayed.
Plain diff
Email patch
PyTorch/NLP/new-Transformer/fairseq/data/iterators.py
0 → 100644
View file @
c0f05c10
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import
itertools
import
logging
import
math
import
operator
import
os
import
queue
import
time
from
threading
import
Thread
import
numpy
as
np
import
torch
from
fairseq.data
import
data_utils
logger
=
logging
.
getLogger
(
__name__
)
# Object used by _background_consumer to signal the source is exhausted
# to the main thread.
_sentinel
=
object
()
class
CountingIterator
(
object
):
"""Wrapper around an iterable that maintains the iteration count.
Args:
iterable (iterable): iterable to wrap
start (int): starting iteration count. Note that this doesn't
actually advance the iterator.
total (int): override the iterator length returned by ``__len``.
This can be used to truncate *iterator*.
Attributes:
n (int): number of elements consumed from this iterator
"""
def
__init__
(
self
,
iterable
,
start
=
None
,
total
=
None
):
self
.
_itr
=
iter
(
iterable
)
self
.
n
=
start
or
getattr
(
iterable
,
"n"
,
0
)
self
.
total
=
total
if
total
is
not
None
else
self
.
n
+
len
(
iterable
)
def
__len__
(
self
):
return
self
.
total
def
__iter__
(
self
):
return
self
def
__next__
(
self
):
if
not
self
.
has_next
():
raise
StopIteration
try
:
x
=
next
(
self
.
_itr
)
except
StopIteration
:
raise
IndexError
(
f
"Iterator expected to have length
{
self
.
total
}
, "
f
"but exhausted at position
{
self
.
n
}
."
)
self
.
n
+=
1
return
x
def
has_next
(
self
):
"""Whether the iterator has been exhausted."""
return
self
.
n
<
self
.
total
def
skip
(
self
,
n
):
"""Fast-forward the iterator by skipping n elements."""
for
_
in
range
(
n
):
next
(
self
)
return
self
def
take
(
self
,
n
):
"""Truncate the iterator to n elements at most."""
self
.
total
=
min
(
self
.
total
,
n
)
# Propagate this change to the underlying iterator
if
hasattr
(
self
.
_itr
,
"take"
):
self
.
_itr
.
take
(
max
(
n
-
self
.
n
,
0
))
return
self
class
EpochBatchIterating
(
object
):
def
__len__
(
self
)
->
int
:
raise
NotImplementedError
@
property
def
next_epoch_idx
(
self
):
raise
NotImplementedError
def
next_epoch_itr
(
self
,
shuffle
=
True
,
fix_batches_to_gpus
=
False
,
set_dataset_epoch
=
True
):
"""Return a new iterator over the dataset.
Args:
shuffle (bool, optional): shuffle batches before returning the
iterator (default: True).
fix_batches_to_gpus (bool, optional): ensure that batches are always
allocated to the same shards across epochs. Requires
that :attr:`dataset` supports prefetching (default: False).
set_dataset_epoch (bool, optional): update the wrapped Dataset with
the new epoch number (default: True).
"""
raise
NotImplementedError
def
end_of_epoch
(
self
)
->
bool
:
"""Returns whether the most recent epoch iterator has been exhausted"""
raise
NotImplementedError
@
property
def
iterations_in_epoch
(
self
)
->
int
:
"""The number of consumed batches in the current epoch."""
raise
NotImplementedError
def
state_dict
(
self
):
"""Returns a dictionary containing a whole state of the iterator."""
raise
NotImplementedError
def
load_state_dict
(
self
,
state_dict
):
"""Copies the state of the iterator from the given *state_dict*."""
raise
NotImplementedError
@
property
def
first_batch
(
self
):
return
"DUMMY"
class
StreamingEpochBatchIterator
(
EpochBatchIterating
):
"""A steaming-style iterator over a :class:`torch.utils.data.IterableDataset`.
Args:
dataset (~torch.utils.data.Dataset): dataset from which to load the data
max_sentences: batch size
collate_fn (callable): merges a list of samples to form a mini-batch
num_workers (int, optional): how many subprocesses to use for data
loading. 0 means the data will be loaded in the main process
(default: 0).
epoch (int, optional): the epoch to start the iterator from
(default: 1).
buffer_size (int, optional): the number of batches to keep ready in the
queue. Helps speeding up dataloading. When buffer_size is zero, the
default torch.utils.data.DataLoader preloading is used.
timeout (int, optional): if positive, the timeout value for collecting a batch
from workers. Should always be non-negative (default: ``0``).
"""
def
__init__
(
self
,
dataset
,
max_sentences
=
1
,
collate_fn
=
None
,
epoch
=
1
,
num_workers
=
0
,
buffer_size
=
0
,
timeout
=
0
,
):
assert
isinstance
(
dataset
,
torch
.
utils
.
data
.
IterableDataset
)
self
.
dataset
=
dataset
self
.
max_sentences
=
max_sentences
self
.
collate_fn
=
collate_fn
self
.
epoch
=
max
(
epoch
,
1
)
# we use 1-based indexing for epochs
self
.
num_workers
=
num_workers
# This upper limit here is to prevent people from abusing this feature
# in a shared computing environment.
self
.
buffer_size
=
min
(
buffer_size
,
20
)
self
.
timeout
=
timeout
self
.
_current_epoch_iterator
=
None
@
property
def
next_epoch_idx
(
self
):
"""Return the epoch index after *next_epoch_itr* is called."""
if
self
.
_current_epoch_iterator
is
not
None
and
self
.
end_of_epoch
():
return
self
.
epoch
+
1
else
:
return
self
.
epoch
def
next_epoch_itr
(
self
,
shuffle
=
True
,
fix_batches_to_gpus
=
False
,
set_dataset_epoch
=
True
):
self
.
epoch
=
self
.
next_epoch_idx
if
set_dataset_epoch
and
hasattr
(
self
.
dataset
,
"set_epoch"
):
self
.
dataset
.
set_epoch
(
self
.
epoch
)
self
.
_current_epoch_iterator
=
self
.
_get_iterator_for_epoch
(
self
.
epoch
,
shuffle
)
return
self
.
_current_epoch_iterator
def
end_of_epoch
(
self
)
->
bool
:
return
not
self
.
_current_epoch_iterator
.
has_next
()
@
property
def
iterations_in_epoch
(
self
)
->
int
:
if
self
.
_current_epoch_iterator
is
not
None
:
return
self
.
_current_epoch_iterator
.
n
return
0
def
state_dict
(
self
):
return
{
"epoch"
:
self
.
epoch
,
}
def
load_state_dict
(
self
,
state_dict
):
self
.
epoch
=
state_dict
[
"epoch"
]
def
_get_iterator_for_epoch
(
self
,
epoch
,
shuffle
,
offset
=
0
):
if
self
.
num_workers
>
0
:
os
.
environ
[
"PYTHONWARNINGS"
]
=
"ignore:semaphore_tracker:UserWarning"
# Create data loader
worker_init_fn
=
getattr
(
self
.
dataset
,
"worker_init_fn"
,
None
)
itr
=
torch
.
utils
.
data
.
DataLoader
(
self
.
dataset
,
batch_size
=
self
.
max_sentences
,
collate_fn
=
self
.
collate_fn
,
num_workers
=
self
.
num_workers
,
timeout
=
self
.
timeout
,
worker_init_fn
=
worker_init_fn
,
pin_memory
=
True
,
)
# Wrap with a BufferedIterator if needed
if
self
.
buffer_size
>
0
:
itr
=
BufferedIterator
(
self
.
buffer_size
,
itr
)
# Wrap with CountingIterator
itr
=
CountingIterator
(
itr
,
start
=
offset
)
return
itr
class
EpochBatchIterator
(
EpochBatchIterating
):
"""A multi-epoch iterator over a :class:`torch.utils.data.Dataset`.
Compared to :class:`torch.utils.data.DataLoader`, this iterator:
- can be reused across multiple epochs with the :func:`next_epoch_itr`
method (optionally shuffled between epochs)
- can be serialized/deserialized with the :func:`state_dict` and
:func:`load_state_dict` methods
- supports sharding with the *num_shards* and *shard_id* arguments
Args:
dataset (~torch.utils.data.Dataset): dataset from which to load the data
collate_fn (callable): merges a list of samples to form a mini-batch
batch_sampler (~torch.utils.data.Sampler or a callable): an iterator over batches of
indices, or a callable to create such an iterator (~torch.utils.data.Sampler).
A callable batch_sampler will be called for each epoch to enable per epoch dynamic
batch iterators defined by this callable batch_sampler.
seed (int, optional): seed for random number generator for
reproducibility (default: 1).
num_shards (int, optional): shard the data iterator into N
shards (default: 1).
shard_id (int, optional): which shard of the data iterator to
return (default: 0).
num_workers (int, optional): how many subprocesses to use for data
loading. 0 means the data will be loaded in the main process
(default: 0).
epoch (int, optional): the epoch to start the iterator from
(default: 1).
buffer_size (int, optional): the number of batches to keep ready in the
queue. Helps speeding up dataloading. When buffer_size is zero, the
default torch.utils.data.DataLoader preloading is used.
timeout (int, optional): if positive, the timeout value for collecting a batch
from workers. Should always be non-negative (default: ``0``).
disable_shuffling (bool, optional): force disable shuffling
(default: ``False``).
skip_remainder_batch (bool, optional): if set, discard the last batch in an epoch
for the sake of training stability, as the last batch is usually smaller than
local_batch_size * distributed_word_size (default: ``False``).
grouped_shuffling (bool, optional): enable shuffling batches in groups
of num_shards. Ensures that each GPU receives similar length sequences when
batches are sorted by length.
"""
def
__init__
(
self
,
dataset
,
collate_fn
,
batch_sampler
,
seed
=
1
,
num_shards
=
1
,
shard_id
=
0
,
num_workers
=
0
,
epoch
=
1
,
buffer_size
=
0
,
timeout
=
0
,
disable_shuffling
=
False
,
skip_remainder_batch
=
False
,
grouped_shuffling
=
False
,
):
assert
isinstance
(
dataset
,
torch
.
utils
.
data
.
Dataset
)
self
.
dataset
=
dataset
self
.
collate_fn
=
collate_fn
self
.
batch_sampler
=
batch_sampler
self
.
_frozen_batches
=
(
tuple
(
batch_sampler
)
if
not
callable
(
batch_sampler
)
else
None
)
self
.
seed
=
seed
self
.
num_shards
=
num_shards
self
.
shard_id
=
shard_id
self
.
num_workers
=
num_workers
# This upper limit here is to prevent people from abusing this feature
# in a shared computing environment.
self
.
buffer_size
=
min
(
buffer_size
,
20
)
self
.
timeout
=
timeout
self
.
disable_shuffling
=
disable_shuffling
self
.
skip_remainder_batch
=
skip_remainder_batch
self
.
grouped_shuffling
=
grouped_shuffling
self
.
epoch
=
max
(
epoch
,
1
)
# we use 1-based indexing for epochs
self
.
shuffle
=
not
disable_shuffling
self
.
_cur_epoch_itr
=
None
self
.
_next_epoch_itr
=
None
self
.
_supports_prefetch
=
getattr
(
dataset
,
"supports_prefetch"
,
False
)
@
property
def
frozen_batches
(
self
):
if
self
.
_frozen_batches
is
None
:
self
.
_frozen_batches
=
tuple
(
self
.
batch_sampler
(
self
.
dataset
,
self
.
epoch
))
return
self
.
_frozen_batches
@
property
def
first_batch
(
self
):
if
len
(
self
.
frozen_batches
)
==
0
:
raise
Exception
(
"The dataset is empty. This could indicate "
"that all elements in the dataset have been skipped. "
"Try increasing the max number of allowed tokens or using "
"a larger dataset."
)
if
getattr
(
self
.
dataset
,
"supports_fetch_outside_dataloader"
,
True
):
return
self
.
collate_fn
([
self
.
dataset
[
i
]
for
i
in
self
.
frozen_batches
[
0
]])
else
:
return
"DUMMY"
def
__len__
(
self
):
return
int
(
math
.
ceil
(
len
(
self
.
frozen_batches
)
/
float
(
self
.
num_shards
)))
@
property
def
n
(
self
):
return
self
.
iterations_in_epoch
@
property
def
next_epoch_idx
(
self
):
"""Return the epoch index after *next_epoch_itr* is called."""
if
self
.
_next_epoch_itr
is
not
None
:
return
self
.
epoch
elif
self
.
_cur_epoch_itr
is
not
None
and
self
.
end_of_epoch
():
return
self
.
epoch
+
1
else
:
return
self
.
epoch
def
next_epoch_itr
(
self
,
shuffle
=
True
,
fix_batches_to_gpus
=
False
,
set_dataset_epoch
=
True
):
"""Return a new iterator over the dataset.
Args:
shuffle (bool, optional): shuffle batches before returning the
iterator (default: True).
fix_batches_to_gpus (bool, optional): ensure that batches are always
allocated to the same shards across epochs. Requires
that :attr:`dataset` supports prefetching (default: False).
set_dataset_epoch (bool, optional): update the wrapped Dataset with
the new epoch number (default: True).
"""
if
self
.
disable_shuffling
:
shuffle
=
False
prev_epoch
=
self
.
epoch
self
.
epoch
=
self
.
next_epoch_idx
if
set_dataset_epoch
and
hasattr
(
self
.
dataset
,
"set_epoch"
):
self
.
dataset
.
set_epoch
(
self
.
epoch
)
if
self
.
_next_epoch_itr
is
not
None
:
self
.
_cur_epoch_itr
=
self
.
_next_epoch_itr
self
.
_next_epoch_itr
=
None
else
:
if
callable
(
self
.
batch_sampler
)
and
prev_epoch
!=
self
.
epoch
:
# reset _frozen_batches to refresh the next epoch
self
.
_frozen_batches
=
None
self
.
_cur_epoch_itr
=
self
.
_get_iterator_for_epoch
(
self
.
epoch
,
shuffle
,
fix_batches_to_gpus
=
fix_batches_to_gpus
,
)
self
.
shuffle
=
shuffle
return
self
.
_cur_epoch_itr
def
end_of_epoch
(
self
)
->
bool
:
"""Returns whether the most recent epoch iterator has been exhausted"""
return
not
self
.
_cur_epoch_itr
.
has_next
()
@
property
def
iterations_in_epoch
(
self
):
"""The number of consumed batches in the current epoch."""
if
self
.
_cur_epoch_itr
is
not
None
:
return
self
.
_cur_epoch_itr
.
n
elif
self
.
_next_epoch_itr
is
not
None
:
return
self
.
_next_epoch_itr
.
n
return
0
def
state_dict
(
self
):
"""Returns a dictionary containing a whole state of the iterator."""
if
self
.
end_of_epoch
():
epoch
=
self
.
epoch
+
1
iter_in_epoch
=
0
else
:
epoch
=
self
.
epoch
iter_in_epoch
=
self
.
iterations_in_epoch
return
{
"version"
:
2
,
"epoch"
:
epoch
,
"iterations_in_epoch"
:
iter_in_epoch
,
"shuffle"
:
self
.
shuffle
,
}
def
load_state_dict
(
self
,
state_dict
):
"""Copies the state of the iterator from the given *state_dict*."""
self
.
epoch
=
state_dict
[
"epoch"
]
itr_pos
=
state_dict
.
get
(
"iterations_in_epoch"
,
0
)
version
=
state_dict
.
get
(
"version"
,
1
)
if
itr_pos
>
0
:
# fast-forward epoch iterator
self
.
_next_epoch_itr
=
self
.
_get_iterator_for_epoch
(
self
.
epoch
,
shuffle
=
state_dict
.
get
(
"shuffle"
,
True
),
offset
=
itr_pos
,
)
if
self
.
_next_epoch_itr
is
None
:
if
version
==
1
:
# legacy behavior: we finished the epoch, increment epoch counter
self
.
epoch
+=
1
else
:
raise
RuntimeError
(
"Cannot resume training due to dataloader mismatch, please "
"report this to the fairseq developers. You can relaunch "
"training with `--reset-dataloader` and it should work."
)
else
:
self
.
_next_epoch_itr
=
None
def
_get_iterator_for_epoch
(
self
,
epoch
,
shuffle
,
fix_batches_to_gpus
=
False
,
offset
=
0
):
def
shuffle_batches
(
batches
,
seed
):
with
data_utils
.
numpy_seed
(
seed
):
if
self
.
grouped_shuffling
:
grouped_batches
=
[
batches
[(
i
*
self
.
num_shards
)
:
((
i
+
1
)
*
self
.
num_shards
)]
for
i
in
range
((
len
(
batches
)
//
self
.
num_shards
))
]
np
.
random
.
shuffle
(
grouped_batches
)
batches
=
list
(
itertools
.
chain
(
*
grouped_batches
))
else
:
np
.
random
.
shuffle
(
batches
)
return
batches
if
self
.
_supports_prefetch
:
batches
=
self
.
frozen_batches
if
shuffle
and
not
fix_batches_to_gpus
:
batches
=
shuffle_batches
(
list
(
batches
),
self
.
seed
+
epoch
)
batches
=
list
(
ShardedIterator
(
batches
,
self
.
num_shards
,
self
.
shard_id
,
fill_value
=
[])
)
self
.
dataset
.
prefetch
([
i
for
s
in
batches
for
i
in
s
])
if
shuffle
and
fix_batches_to_gpus
:
batches
=
shuffle_batches
(
batches
,
self
.
seed
+
epoch
+
self
.
shard_id
)
else
:
if
shuffle
:
batches
=
shuffle_batches
(
list
(
self
.
frozen_batches
),
self
.
seed
+
epoch
)
else
:
batches
=
self
.
frozen_batches
batches
=
list
(
ShardedIterator
(
batches
,
self
.
num_shards
,
self
.
shard_id
,
fill_value
=
[])
)
if
offset
>
0
and
offset
>=
len
(
batches
):
return
None
if
self
.
num_workers
>
0
:
os
.
environ
[
"PYTHONWARNINGS"
]
=
"ignore:semaphore_tracker:UserWarning"
# Create data loader
itr
=
torch
.
utils
.
data
.
DataLoader
(
self
.
dataset
,
collate_fn
=
self
.
collate_fn
,
batch_sampler
=
batches
[
offset
:],
num_workers
=
self
.
num_workers
,
timeout
=
self
.
timeout
,
pin_memory
=
True
,
)
# Wrap with a BufferedIterator if needed
if
self
.
buffer_size
>
0
:
itr
=
BufferedIterator
(
self
.
buffer_size
,
itr
)
# Wrap with CountingIterator
itr
=
CountingIterator
(
itr
,
start
=
offset
)
if
self
.
skip_remainder_batch
:
# TODO: Below is a lazy implementation which discard the final batch regardless
# of whether it is a full batch or not.
total_num_itrs
=
len
(
batches
)
-
1
itr
.
take
(
total_num_itrs
)
logger
.
info
(
f
"skip final residual batch, total_num_itrs =
{
total_num_itrs
}
"
)
return
itr
class
GroupedIterator
(
CountingIterator
):
"""Wrapper around an iterable that returns groups (chunks) of items.
Args:
iterable (iterable): iterable to wrap
chunk_size (int): size of each chunk
skip_remainder_batch (bool, optional): if set, discard the last grouped batch in
each training epoch, as the last grouped batch is usually smaller than
local_batch_size * distributed_word_size * chunk_size (default: ``False``).
Attributes:
n (int): number of elements consumed from this iterator
"""
def
__init__
(
self
,
iterable
,
chunk_size
,
skip_remainder_batch
=
False
):
if
skip_remainder_batch
:
total_num_itrs
=
int
(
math
.
floor
(
len
(
iterable
)
/
float
(
chunk_size
)))
logger
.
info
(
f
"skip final residual batch, grouped total_num_itrs =
{
total_num_itrs
}
"
)
else
:
total_num_itrs
=
int
(
math
.
ceil
(
len
(
iterable
)
/
float
(
chunk_size
)))
logger
.
info
(
f
"grouped total_num_itrs =
{
total_num_itrs
}
"
)
itr
=
_chunk_iterator
(
iterable
,
chunk_size
,
skip_remainder_batch
)
super
().
__init__
(
itr
,
start
=
int
(
math
.
ceil
(
getattr
(
iterable
,
"n"
,
0
)
/
float
(
chunk_size
))),
total
=
total_num_itrs
,
)
self
.
chunk_size
=
chunk_size
if
skip_remainder_batch
:
self
.
take
(
total_num_itrs
)
# TODO: [Hack] Here the grouped iterator modifies the base iterator size so that
# training can move into the next epoch once the grouped iterator is exhausted.
# Double-check this implementation in case unexpected behavior occurs.
iterable
.
take
(
total_num_itrs
*
chunk_size
)
def
_chunk_iterator
(
itr
,
chunk_size
,
skip_remainder_batch
=
False
):
chunk
=
[]
for
x
in
itr
:
chunk
.
append
(
x
)
if
len
(
chunk
)
==
chunk_size
:
yield
chunk
chunk
=
[]
if
not
skip_remainder_batch
and
len
(
chunk
)
>
0
:
yield
chunk
class
ShardedIterator
(
CountingIterator
):
"""A sharded wrapper around an iterable, padded to length.
Args:
iterable (iterable): iterable to wrap
num_shards (int): number of shards to split the iterable into
shard_id (int): which shard to iterator over
fill_value (Any, optional): padding value when the iterable doesn't
evenly divide *num_shards* (default: None).
Attributes:
n (int): number of elements consumed from this iterator
"""
def
__init__
(
self
,
iterable
,
num_shards
,
shard_id
,
fill_value
=
None
,
skip_remainder_batch
=
None
):
"""
Args:
skip_remainder_batch: ignored"""
if
shard_id
<
0
or
shard_id
>=
num_shards
:
raise
ValueError
(
"shard_id must be between 0 and num_shards"
)
sharded_len
=
int
(
math
.
ceil
(
len
(
iterable
)
/
float
(
num_shards
)))
itr
=
map
(
operator
.
itemgetter
(
1
),
itertools
.
zip_longest
(
range
(
sharded_len
),
itertools
.
islice
(
iterable
,
shard_id
,
len
(
iterable
),
num_shards
),
fillvalue
=
fill_value
,
),
)
super
().
__init__
(
itr
,
start
=
int
(
math
.
ceil
(
getattr
(
iterable
,
"n"
,
0
)
/
float
(
num_shards
))),
total
=
sharded_len
,
)
class
BackgroundConsumer
(
Thread
):
def
__init__
(
self
,
queue
,
source
,
max_len
,
cuda_device
):
Thread
.
__init__
(
self
)
self
.
_queue
=
queue
self
.
_source
=
source
self
.
_max_len
=
max_len
self
.
count
=
0
self
.
cuda_device
=
cuda_device
def
run
(
self
):
# set_device to avoid creation of GPU0 context when using pin_memory
if
self
.
cuda_device
is
not
None
:
torch
.
cuda
.
set_device
(
self
.
cuda_device
)
try
:
for
item
in
self
.
_source
:
self
.
_queue
.
put
(
item
)
# Stop if we reached the maximum length
self
.
count
+=
1
if
self
.
_max_len
is
not
None
and
self
.
count
>=
self
.
_max_len
:
break
# Signal the consumer we are done.
self
.
_queue
.
put
(
_sentinel
)
except
Exception
as
e
:
self
.
_queue
.
put
(
e
)
class
BufferedIterator
(
object
):
def
__init__
(
self
,
size
,
iterable
):
self
.
_queue
=
queue
.
Queue
(
size
)
self
.
_iterable
=
iterable
self
.
_consumer
=
None
self
.
start_time
=
time
.
time
()
self
.
warning_time
=
None
self
.
total
=
len
(
iterable
)
def
_create_consumer
(
self
):
self
.
_consumer
=
BackgroundConsumer
(
self
.
_queue
,
self
.
_iterable
,
self
.
total
,
torch
.
cuda
.
current_device
()
if
torch
.
cuda
.
is_available
()
else
None
,
)
self
.
_consumer
.
daemon
=
True
self
.
_consumer
.
start
()
def
__iter__
(
self
):
return
self
def
__len__
(
self
):
return
self
.
total
def
take
(
self
,
n
):
self
.
total
=
min
(
self
.
total
,
n
)
# Propagate this change to the underlying iterator
if
hasattr
(
self
.
_iterable
,
"take"
):
self
.
_iterable
.
take
(
n
)
return
self
def
__next__
(
self
):
# Create consumer if not created yet
if
self
.
_consumer
is
None
:
self
.
_create_consumer
()
# Notify the user if there is a data loading bottleneck
if
self
.
_queue
.
qsize
()
<
min
(
2
,
max
(
1
,
self
.
_queue
.
maxsize
//
2
)):
if
time
.
time
()
-
self
.
start_time
>
5
*
60
:
if
(
self
.
warning_time
is
None
or
time
.
time
()
-
self
.
warning_time
>
15
*
60
):
logger
.
debug
(
"Data loading buffer is empty or nearly empty. This may "
"indicate a data loading bottleneck, and increasing the "
"number of workers (--num-workers) may help."
)
self
.
warning_time
=
time
.
time
()
# Get next example
item
=
self
.
_queue
.
get
(
True
)
if
isinstance
(
item
,
Exception
):
raise
item
if
item
is
_sentinel
:
raise
StopIteration
()
return
item
class
GroupedEpochBatchIterator
(
EpochBatchIterator
):
"""Grouped version of EpochBatchIterator
It takes several samplers from different datasets.
Each epoch shuffle the dataset wise sampler individually with different
random seed. The those sub samplers are combined with into
one big samplers with deterministic permutation to mix batches from
different datasets. It will act like EpochBatchIterator but make sure
1) data from one data set each time
2) for different workers, they use the same order to fetch the data
so they will use data from the same dataset everytime
mult_rate is used for update_freq > 1 case where we want to make sure update_freq
mini-batches come from same source
"""
def
__init__
(
self
,
dataset
,
collate_fn
,
batch_samplers
,
seed
=
1
,
num_shards
=
1
,
shard_id
=
0
,
num_workers
=
0
,
epoch
=
0
,
mult_rate
=
1
,
buffer_size
=
0
,
skip_remainder_batch
=
False
,
):
super
().
__init__
(
dataset
,
collate_fn
,
batch_samplers
,
seed
,
num_shards
,
shard_id
,
num_workers
,
epoch
,
buffer_size
,
skip_remainder_batch
=
skip_remainder_batch
,
)
# level 0: sub-samplers 1: batch_idx 2: batches
self
.
_frozen_batches
=
tuple
([
tuple
(
sub_batch
)
for
sub_batch
in
batch_samplers
])
self
.
step_size
=
mult_rate
*
num_shards
self
.
lengths
=
[
(
len
(
x
)
//
self
.
step_size
)
*
self
.
step_size
for
x
in
self
.
frozen_batches
]
def
__len__
(
self
):
return
sum
(
self
.
lengths
)
@
property
def
first_batch
(
self
):
if
len
(
self
.
frozen_batches
)
==
0
:
raise
Exception
(
"The dataset is empty. This could indicate "
"that all elements in the dataset have been skipped. "
"Try increasing the max number of allowed tokens or using "
"a larger dataset."
)
if
self
.
dataset
.
supports_fetch_outside_dataloader
:
return
self
.
collate_fn
([
self
.
dataset
[
i
]
for
i
in
self
.
frozen_batches
[
0
][
0
]])
else
:
return
"DUMMY"
def
_get_iterator_for_epoch
(
self
,
epoch
,
shuffle
,
fix_batches_to_gpus
=
False
,
offset
=
0
):
def
shuffle_batches
(
batches
,
seed
):
with
data_utils
.
numpy_seed
(
seed
):
np
.
random
.
shuffle
(
batches
)
return
batches
def
return_full_batches
(
batch_sets
,
seed
,
shuffle
):
if
shuffle
:
batch_sets
=
[
shuffle_batches
(
list
(
x
),
seed
)
for
x
in
batch_sets
]
batch_sets
=
[
batch_sets
[
i
][:
self
.
lengths
[
i
]]
for
i
in
range
(
len
(
batch_sets
))
]
batches
=
list
(
itertools
.
chain
.
from_iterable
(
batch_sets
))
if
shuffle
:
with
data_utils
.
numpy_seed
(
seed
):
idx
=
np
.
random
.
permutation
(
len
(
batches
)
//
self
.
step_size
)
if
len
(
idx
)
*
self
.
step_size
!=
len
(
batches
):
raise
ValueError
(
"ERROR: %d %d %d %d"
%
(
len
(
idx
),
self
.
step_size
,
len
(
batches
),
self
.
shard_id
),
":"
.
join
([
"%d"
%
x
for
x
in
self
.
lengths
]),
)
mini_shards
=
[
batches
[
i
*
self
.
step_size
:
(
i
+
1
)
*
self
.
step_size
]
for
i
in
idx
]
batches
=
list
(
itertools
.
chain
.
from_iterable
(
mini_shards
))
return
batches
if
self
.
_supports_prefetch
:
raise
NotImplementedError
(
"To be implemented"
)
else
:
batches
=
return_full_batches
(
self
.
frozen_batches
,
self
.
seed
+
epoch
,
shuffle
)
batches
=
list
(
ShardedIterator
(
batches
,
self
.
num_shards
,
self
.
shard_id
,
fill_value
=
[])
)
if
offset
>
0
and
offset
>=
len
(
batches
):
return
None
if
self
.
num_workers
>
0
:
os
.
environ
[
"PYTHONWARNINGS"
]
=
"ignore:semaphore_tracker:UserWarning"
itr
=
torch
.
utils
.
data
.
DataLoader
(
self
.
dataset
,
collate_fn
=
self
.
collate_fn
,
batch_sampler
=
batches
[
offset
:],
num_workers
=
self
.
num_workers
,
)
if
self
.
buffer_size
>
0
:
itr
=
BufferedIterator
(
self
.
buffer_size
,
itr
)
return
CountingIterator
(
itr
,
start
=
offset
)
PyTorch/NLP/new-Transformer/fairseq/data/language_pair_dataset.py
0 → 100644
View file @
c0f05c10
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import
logging
import
numpy
as
np
import
torch
from
fairseq.data
import
FairseqDataset
,
data_utils
logger
=
logging
.
getLogger
(
__name__
)
def
collate
(
samples
,
pad_idx
,
eos_idx
,
left_pad_source
=
True
,
left_pad_target
=
False
,
input_feeding
=
True
,
pad_to_length
=
None
,
pad_to_multiple
=
1
,
):
if
len
(
samples
)
==
0
:
return
{}
def
merge
(
key
,
left_pad
,
move_eos_to_beginning
=
False
,
pad_to_length
=
None
):
return
data_utils
.
collate_tokens
(
[
s
[
key
]
for
s
in
samples
],
pad_idx
,
eos_idx
,
left_pad
,
move_eos_to_beginning
,
pad_to_length
=
pad_to_length
,
pad_to_multiple
=
pad_to_multiple
,
)
def
check_alignment
(
alignment
,
src_len
,
tgt_len
):
if
alignment
is
None
or
len
(
alignment
)
==
0
:
return
False
if
(
alignment
[:,
0
].
max
().
item
()
>=
src_len
-
1
or
alignment
[:,
1
].
max
().
item
()
>=
tgt_len
-
1
):
logger
.
warning
(
"alignment size mismatch found, skipping alignment!"
)
return
False
return
True
def
compute_alignment_weights
(
alignments
):
"""
Given a tensor of shape [:, 2] containing the source-target indices
corresponding to the alignments, a weight vector containing the
inverse frequency of each target index is computed.
For e.g. if alignments = [[5, 7], [2, 3], [1, 3], [4, 2]], then
a tensor containing [1., 0.5, 0.5, 1] should be returned (since target
index 3 is repeated twice)
"""
align_tgt
=
alignments
[:,
1
]
_
,
align_tgt_i
,
align_tgt_c
=
torch
.
unique
(
align_tgt
,
return_inverse
=
True
,
return_counts
=
True
)
align_weights
=
align_tgt_c
[
align_tgt_i
[
np
.
arange
(
len
(
align_tgt
))]]
return
1.0
/
align_weights
.
float
()
id
=
torch
.
LongTensor
([
s
[
"id"
]
for
s
in
samples
])
src_tokens
=
merge
(
"source"
,
left_pad
=
left_pad_source
,
pad_to_length
=
pad_to_length
[
"source"
]
if
pad_to_length
is
not
None
else
None
,
)
# sort by descending source length
src_lengths
=
torch
.
LongTensor
(
[
s
[
"source"
].
ne
(
pad_idx
).
long
().
sum
()
for
s
in
samples
]
)
src_lengths
,
sort_order
=
src_lengths
.
sort
(
descending
=
True
)
id
=
id
.
index_select
(
0
,
sort_order
)
src_tokens
=
src_tokens
.
index_select
(
0
,
sort_order
)
prev_output_tokens
=
None
target
=
None
if
samples
[
0
].
get
(
"target"
,
None
)
is
not
None
:
target
=
merge
(
"target"
,
left_pad
=
left_pad_target
,
pad_to_length
=
pad_to_length
[
"target"
]
if
pad_to_length
is
not
None
else
None
,
)
target
=
target
.
index_select
(
0
,
sort_order
)
tgt_lengths
=
torch
.
LongTensor
(
[
s
[
"target"
].
ne
(
pad_idx
).
long
().
sum
()
for
s
in
samples
]
).
index_select
(
0
,
sort_order
)
ntokens
=
tgt_lengths
.
sum
().
item
()
if
samples
[
0
].
get
(
"prev_output_tokens"
,
None
)
is
not
None
:
prev_output_tokens
=
merge
(
"prev_output_tokens"
,
left_pad
=
left_pad_target
)
elif
input_feeding
:
# we create a shifted version of targets for feeding the
# previous output token(s) into the next decoder step
prev_output_tokens
=
merge
(
"target"
,
left_pad
=
left_pad_target
,
move_eos_to_beginning
=
True
,
pad_to_length
=
pad_to_length
[
"target"
]
if
pad_to_length
is
not
None
else
None
,
)
else
:
ntokens
=
src_lengths
.
sum
().
item
()
batch
=
{
"id"
:
id
,
"nsentences"
:
len
(
samples
),
"ntokens"
:
ntokens
,
"net_input"
:
{
"src_tokens"
:
src_tokens
,
"src_lengths"
:
src_lengths
,
},
"target"
:
target
,
}
if
prev_output_tokens
is
not
None
:
batch
[
"net_input"
][
"prev_output_tokens"
]
=
prev_output_tokens
.
index_select
(
0
,
sort_order
)
if
samples
[
0
].
get
(
"alignment"
,
None
)
is
not
None
:
bsz
,
tgt_sz
=
batch
[
"target"
].
shape
src_sz
=
batch
[
"net_input"
][
"src_tokens"
].
shape
[
1
]
offsets
=
torch
.
zeros
((
len
(
sort_order
),
2
),
dtype
=
torch
.
long
)
offsets
[:,
1
]
+=
torch
.
arange
(
len
(
sort_order
),
dtype
=
torch
.
long
)
*
tgt_sz
if
left_pad_source
:
offsets
[:,
0
]
+=
src_sz
-
src_lengths
if
left_pad_target
:
offsets
[:,
1
]
+=
tgt_sz
-
tgt_lengths
alignments
=
[
alignment
+
offset
for
align_idx
,
offset
,
src_len
,
tgt_len
in
zip
(
sort_order
,
offsets
,
src_lengths
,
tgt_lengths
)
for
alignment
in
[
samples
[
align_idx
][
"alignment"
].
view
(
-
1
,
2
)]
if
check_alignment
(
alignment
,
src_len
,
tgt_len
)
]
if
len
(
alignments
)
>
0
:
alignments
=
torch
.
cat
(
alignments
,
dim
=
0
)
align_weights
=
compute_alignment_weights
(
alignments
)
batch
[
"alignments"
]
=
alignments
batch
[
"align_weights"
]
=
align_weights
if
samples
[
0
].
get
(
"constraints"
,
None
)
is
not
None
:
# Collate the packed constraints across the samples, padding to
# the length of the longest sample.
lens
=
[
sample
.
get
(
"constraints"
).
size
(
0
)
for
sample
in
samples
]
max_len
=
max
(
lens
)
constraints
=
torch
.
zeros
((
len
(
samples
),
max
(
lens
))).
long
()
for
i
,
sample
in
enumerate
(
samples
):
constraints
[
i
,
0
:
lens
[
i
]]
=
samples
[
i
].
get
(
"constraints"
)
batch
[
"constraints"
]
=
constraints
.
index_select
(
0
,
sort_order
)
return
batch
class
LanguagePairDataset
(
FairseqDataset
):
"""
A pair of torch.utils.data.Datasets.
Args:
src (torch.utils.data.Dataset): source dataset to wrap
src_sizes (List[int]): source sentence lengths
src_dict (~fairseq.data.Dictionary): source vocabulary
tgt (torch.utils.data.Dataset, optional): target dataset to wrap
tgt_sizes (List[int], optional): target sentence lengths
tgt_dict (~fairseq.data.Dictionary, optional): target vocabulary
left_pad_source (bool, optional): pad source tensors on the left side
(default: True).
left_pad_target (bool, optional): pad target tensors on the left side
(default: False).
shuffle (bool, optional): shuffle dataset elements before batching
(default: True).
input_feeding (bool, optional): create a shifted version of the targets
to be passed into the model for teacher forcing (default: True).
remove_eos_from_source (bool, optional): if set, removes eos from end
of source if it's present (default: False).
append_eos_to_target (bool, optional): if set, appends eos to end of
target if it's absent (default: False).
align_dataset (torch.utils.data.Dataset, optional): dataset
containing alignments.
constraints (Tensor, optional): 2d tensor with a concatenated, zero-
delimited list of constraints for each sentence.
append_bos (bool, optional): if set, appends bos to the beginning of
source/target sentence.
num_buckets (int, optional): if set to a value greater than 0, then
batches will be bucketed into the given number of batch shapes.
src_lang_id (int, optional): source language ID, if set, the collated batch
will contain a field 'src_lang_id' in 'net_input' which indicates the
source language of the samples.
tgt_lang_id (int, optional): target language ID, if set, the collated batch
will contain a field 'tgt_lang_id' which indicates the target language
of the samples.
"""
def
__init__
(
self
,
src
,
src_sizes
,
src_dict
,
tgt
=
None
,
tgt_sizes
=
None
,
tgt_dict
=
None
,
left_pad_source
=
True
,
left_pad_target
=
False
,
shuffle
=
True
,
input_feeding
=
True
,
remove_eos_from_source
=
False
,
append_eos_to_target
=
False
,
align_dataset
=
None
,
constraints
=
None
,
append_bos
=
False
,
eos
=
None
,
num_buckets
=
0
,
src_lang_id
=
None
,
tgt_lang_id
=
None
,
pad_to_multiple
=
1
,
):
if
tgt_dict
is
not
None
:
assert
src_dict
.
pad
()
==
tgt_dict
.
pad
()
assert
src_dict
.
eos
()
==
tgt_dict
.
eos
()
assert
src_dict
.
unk
()
==
tgt_dict
.
unk
()
if
tgt
is
not
None
:
assert
len
(
src
)
==
len
(
tgt
),
"Source and target must contain the same number of examples"
self
.
src
=
src
self
.
tgt
=
tgt
self
.
src_sizes
=
np
.
array
(
src_sizes
)
self
.
tgt_sizes
=
np
.
array
(
tgt_sizes
)
if
tgt_sizes
is
not
None
else
None
self
.
sizes
=
(
np
.
vstack
((
self
.
src_sizes
,
self
.
tgt_sizes
)).
T
if
self
.
tgt_sizes
is
not
None
else
self
.
src_sizes
)
self
.
src_dict
=
src_dict
self
.
tgt_dict
=
tgt_dict
self
.
left_pad_source
=
left_pad_source
self
.
left_pad_target
=
left_pad_target
self
.
shuffle
=
shuffle
self
.
input_feeding
=
input_feeding
self
.
remove_eos_from_source
=
remove_eos_from_source
self
.
append_eos_to_target
=
append_eos_to_target
self
.
align_dataset
=
align_dataset
if
self
.
align_dataset
is
not
None
:
assert
(
self
.
tgt_sizes
is
not
None
),
"Both source and target needed when alignments are provided"
self
.
constraints
=
constraints
self
.
append_bos
=
append_bos
self
.
eos
=
eos
if
eos
is
not
None
else
src_dict
.
eos
()
self
.
src_lang_id
=
src_lang_id
self
.
tgt_lang_id
=
tgt_lang_id
if
num_buckets
>
0
:
from
fairseq.data
import
BucketPadLengthDataset
self
.
src
=
BucketPadLengthDataset
(
self
.
src
,
sizes
=
self
.
src_sizes
,
num_buckets
=
num_buckets
,
pad_idx
=
self
.
src_dict
.
pad
(),
left_pad
=
self
.
left_pad_source
,
)
self
.
src_sizes
=
self
.
src
.
sizes
logger
.
info
(
"bucketing source lengths: {}"
.
format
(
list
(
self
.
src
.
buckets
)))
if
self
.
tgt
is
not
None
:
self
.
tgt
=
BucketPadLengthDataset
(
self
.
tgt
,
sizes
=
self
.
tgt_sizes
,
num_buckets
=
num_buckets
,
pad_idx
=
self
.
tgt_dict
.
pad
(),
left_pad
=
self
.
left_pad_target
,
)
self
.
tgt_sizes
=
self
.
tgt
.
sizes
logger
.
info
(
"bucketing target lengths: {}"
.
format
(
list
(
self
.
tgt
.
buckets
))
)
# determine bucket sizes using self.num_tokens, which will return
# the padded lengths (thanks to BucketPadLengthDataset)
num_tokens
=
np
.
vectorize
(
self
.
num_tokens
,
otypes
=
[
np
.
compat
.
long
])
self
.
bucketed_num_tokens
=
num_tokens
(
np
.
arange
(
len
(
self
.
src
)))
self
.
buckets
=
[
(
None
,
num_tokens
)
for
num_tokens
in
np
.
unique
(
self
.
bucketed_num_tokens
)
]
else
:
self
.
buckets
=
None
self
.
pad_to_multiple
=
pad_to_multiple
def
get_batch_shapes
(
self
):
return
self
.
buckets
def
__getitem__
(
self
,
index
):
tgt_item
=
self
.
tgt
[
index
]
if
self
.
tgt
is
not
None
else
None
src_item
=
self
.
src
[
index
]
# Append EOS to end of tgt sentence if it does not have an EOS and remove
# EOS from end of src sentence if it exists. This is useful when we use
# use existing datasets for opposite directions i.e., when we want to
# use tgt_dataset as src_dataset and vice versa
if
self
.
append_eos_to_target
:
eos
=
self
.
tgt_dict
.
eos
()
if
self
.
tgt_dict
else
self
.
src_dict
.
eos
()
if
self
.
tgt
and
self
.
tgt
[
index
][
-
1
]
!=
eos
:
tgt_item
=
torch
.
cat
([
self
.
tgt
[
index
],
torch
.
LongTensor
([
eos
])])
if
self
.
append_bos
:
bos
=
self
.
tgt_dict
.
bos
()
if
self
.
tgt_dict
else
self
.
src_dict
.
bos
()
if
self
.
tgt
and
self
.
tgt
[
index
][
0
]
!=
bos
:
tgt_item
=
torch
.
cat
([
torch
.
LongTensor
([
bos
]),
self
.
tgt
[
index
]])
bos
=
self
.
src_dict
.
bos
()
if
self
.
src
[
index
][
0
]
!=
bos
:
src_item
=
torch
.
cat
([
torch
.
LongTensor
([
bos
]),
self
.
src
[
index
]])
if
self
.
remove_eos_from_source
:
eos
=
self
.
src_dict
.
eos
()
if
self
.
src
[
index
][
-
1
]
==
eos
:
src_item
=
self
.
src
[
index
][:
-
1
]
example
=
{
"id"
:
index
,
"source"
:
src_item
,
"target"
:
tgt_item
,
}
if
self
.
align_dataset
is
not
None
:
example
[
"alignment"
]
=
self
.
align_dataset
[
index
]
if
self
.
constraints
is
not
None
:
example
[
"constraints"
]
=
self
.
constraints
[
index
]
return
example
def
__len__
(
self
):
return
len
(
self
.
src
)
def
collater
(
self
,
samples
,
pad_to_length
=
None
):
"""Merge a list of samples to form a mini-batch.
Args:
samples (List[dict]): samples to collate
pad_to_length (dict, optional): a dictionary of
{'source': source_pad_to_length, 'target': target_pad_to_length}
to indicate the max length to pad to in source and target respectively.
Returns:
dict: a mini-batch with the following keys:
- `id` (LongTensor): example IDs in the original input order
- `ntokens` (int): total number of tokens in the batch
- `net_input` (dict): the input to the Model, containing keys:
- `src_tokens` (LongTensor): a padded 2D Tensor of tokens in
the source sentence of shape `(bsz, src_len)`. Padding will
appear on the left if *left_pad_source* is ``True``.
- `src_lengths` (LongTensor): 1D Tensor of the unpadded
lengths of each source sentence of shape `(bsz)`
- `prev_output_tokens` (LongTensor): a padded 2D Tensor of
tokens in the target sentence, shifted right by one
position for teacher forcing, of shape `(bsz, tgt_len)`.
This key will not be present if *input_feeding* is
``False``. Padding will appear on the left if
*left_pad_target* is ``True``.
- `src_lang_id` (LongTensor): a long Tensor which contains source
language IDs of each sample in the batch
- `target` (LongTensor): a padded 2D Tensor of tokens in the
target sentence of shape `(bsz, tgt_len)`. Padding will appear
on the left if *left_pad_target* is ``True``.
- `tgt_lang_id` (LongTensor): a long Tensor which contains target language
IDs of each sample in the batch
"""
res
=
collate
(
samples
,
pad_idx
=
self
.
src_dict
.
pad
(),
eos_idx
=
self
.
eos
,
left_pad_source
=
self
.
left_pad_source
,
left_pad_target
=
self
.
left_pad_target
,
input_feeding
=
self
.
input_feeding
,
pad_to_length
=
pad_to_length
,
pad_to_multiple
=
self
.
pad_to_multiple
,
)
if
self
.
src_lang_id
is
not
None
or
self
.
tgt_lang_id
is
not
None
:
src_tokens
=
res
[
"net_input"
][
"src_tokens"
]
bsz
=
src_tokens
.
size
(
0
)
if
self
.
src_lang_id
is
not
None
:
res
[
"net_input"
][
"src_lang_id"
]
=
(
torch
.
LongTensor
([[
self
.
src_lang_id
]]).
expand
(
bsz
,
1
).
to
(
src_tokens
)
)
if
self
.
tgt_lang_id
is
not
None
:
res
[
"tgt_lang_id"
]
=
(
torch
.
LongTensor
([[
self
.
tgt_lang_id
]]).
expand
(
bsz
,
1
).
to
(
src_tokens
)
)
return
res
def
num_tokens
(
self
,
index
):
"""Return the number of tokens in a sample. This value is used to
enforce ``--max-tokens`` during batching."""
return
max
(
self
.
src_sizes
[
index
],
self
.
tgt_sizes
[
index
]
if
self
.
tgt_sizes
is
not
None
else
0
,
)
def
num_tokens_vec
(
self
,
indices
):
"""Return the number of tokens for a set of positions defined by indices.
This value is used to enforce ``--max-tokens`` during batching."""
sizes
=
self
.
src_sizes
[
indices
]
if
self
.
tgt_sizes
is
not
None
:
sizes
=
np
.
maximum
(
sizes
,
self
.
tgt_sizes
[
indices
])
return
sizes
def
size
(
self
,
index
):
"""Return an example's size as a float or tuple. This value is used when
filtering a dataset with ``--max-positions``."""
return
(
self
.
src_sizes
[
index
],
self
.
tgt_sizes
[
index
]
if
self
.
tgt_sizes
is
not
None
else
0
,
)
def
ordered_indices
(
self
):
"""Return an ordered list of indices. Batches will be constructed based
on this order."""
if
self
.
shuffle
:
indices
=
np
.
random
.
permutation
(
len
(
self
)).
astype
(
np
.
int64
)
else
:
indices
=
np
.
arange
(
len
(
self
),
dtype
=
np
.
int64
)
if
self
.
buckets
is
None
:
# sort by target length, then source length
if
self
.
tgt_sizes
is
not
None
:
indices
=
indices
[
np
.
argsort
(
self
.
tgt_sizes
[
indices
],
kind
=
"mergesort"
)]
return
indices
[
np
.
argsort
(
self
.
src_sizes
[
indices
],
kind
=
"mergesort"
)]
else
:
# sort by bucketed_num_tokens, which is:
# max(padded_src_len, padded_tgt_len)
return
indices
[
np
.
argsort
(
self
.
bucketed_num_tokens
[
indices
],
kind
=
"mergesort"
)
]
@
property
def
supports_prefetch
(
self
):
return
getattr
(
self
.
src
,
"supports_prefetch"
,
False
)
and
(
getattr
(
self
.
tgt
,
"supports_prefetch"
,
False
)
or
self
.
tgt
is
None
)
def
prefetch
(
self
,
indices
):
self
.
src
.
prefetch
(
indices
)
if
self
.
tgt
is
not
None
:
self
.
tgt
.
prefetch
(
indices
)
if
self
.
align_dataset
is
not
None
:
self
.
align_dataset
.
prefetch
(
indices
)
def
filter_indices_by_size
(
self
,
indices
,
max_sizes
):
"""Filter a list of sample indices. Remove those that are longer
than specified in max_sizes.
Args:
indices (np.array): original array of sample indices
max_sizes (int or list[int] or tuple[int]): max sample size,
can be defined separately for src and tgt (then list or tuple)
Returns:
np.array: filtered sample array
list: list of removed indices
"""
return
data_utils
.
filter_paired_dataset_indices_by_size
(
self
.
src_sizes
,
self
.
tgt_sizes
,
indices
,
max_sizes
,
)
PyTorch/NLP/new-Transformer/fairseq/data/legacy/__init__.py
0 → 100644
View file @
c0f05c10
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from
.block_pair_dataset
import
BlockPairDataset
from
.masked_lm_dataset
import
MaskedLMDataset
from
.masked_lm_dictionary
import
BertDictionary
,
MaskedLMDictionary
__all__
=
[
"BertDictionary"
,
"BlockPairDataset"
,
"MaskedLMDataset"
,
"MaskedLMDictionary"
,
]
PyTorch/NLP/new-Transformer/fairseq/data/legacy/block_pair_dataset.py
0 → 100644
View file @
c0f05c10
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import
math
import
numpy
as
np
import
torch
from
fairseq.data
import
FairseqDataset
class
BlockPairDataset
(
FairseqDataset
):
"""Break a Dataset of tokens into sentence pair blocks for next sentence
prediction as well as masked language model.
High-level logics are:
1. break input tensor to tensor blocks
2. pair the blocks with 50% next sentence and 50% random sentence
3. return paired blocks as well as related segment labels
Args:
dataset (~torch.utils.data.Dataset): dataset to break into blocks
sizes: array of sentence lengths
dictionary: dictionary for the task
block_size: maximum block size
break_mode: mode for breaking copurs into block pairs. currently we support
2 modes
doc: respect document boundaries and each part of the pair should belong to on document
none: don't respect any boundary and cut tokens evenly
short_seq_prob: probability for generating shorter block pairs
doc_break_size: Size for empty line separating documents. Typically 1 if
the sentences have eos, 0 otherwise.
"""
def
__init__
(
self
,
dataset
,
dictionary
,
sizes
,
block_size
,
break_mode
=
"doc"
,
short_seq_prob
=
0.1
,
doc_break_size
=
1
,
):
super
().
__init__
()
self
.
dataset
=
dataset
self
.
pad
=
dictionary
.
pad
()
self
.
eos
=
dictionary
.
eos
()
self
.
cls
=
dictionary
.
cls
()
self
.
mask
=
dictionary
.
mask
()
self
.
sep
=
dictionary
.
sep
()
self
.
break_mode
=
break_mode
self
.
dictionary
=
dictionary
self
.
short_seq_prob
=
short_seq_prob
self
.
block_indices
=
[]
assert
len
(
dataset
)
==
len
(
sizes
)
if
break_mode
==
"doc"
:
cur_doc
=
[]
for
sent_id
,
sz
in
enumerate
(
sizes
):
assert
doc_break_size
==
0
or
sz
!=
0
,
(
"when doc_break_size is non-zero, we expect documents to be"
"separated by a blank line with a single eos."
)
# empty line as document separator
if
sz
==
doc_break_size
:
if
len
(
cur_doc
)
==
0
:
continue
self
.
block_indices
.
append
(
cur_doc
)
cur_doc
=
[]
else
:
cur_doc
.
append
(
sent_id
)
max_num_tokens
=
block_size
-
3
# Account for [CLS], [SEP], [SEP]
self
.
sent_pairs
=
[]
self
.
sizes
=
[]
for
doc_id
,
doc
in
enumerate
(
self
.
block_indices
):
self
.
_generate_sentence_pair
(
doc
,
doc_id
,
max_num_tokens
,
sizes
)
elif
break_mode
is
None
or
break_mode
==
"none"
:
# each block should have half of the block size since we are constructing block pair
sent_length
=
(
block_size
-
3
)
//
2
total_len
=
sum
(
dataset
.
sizes
)
length
=
math
.
ceil
(
total_len
/
sent_length
)
def
block_at
(
i
):
start
=
i
*
sent_length
end
=
min
(
start
+
sent_length
,
total_len
)
return
(
start
,
end
)
sent_indices
=
np
.
array
([
block_at
(
i
)
for
i
in
range
(
length
)])
sent_sizes
=
np
.
array
([
e
-
s
for
s
,
e
in
sent_indices
])
dataset_index
=
self
.
_sent_to_dataset_index
(
sent_sizes
)
# pair sentences
self
.
_pair_sentences
(
dataset_index
)
else
:
raise
ValueError
(
"Invalid break_mode: "
+
break_mode
)
def
_pair_sentences
(
self
,
dataset_index
):
"""
Give a list of evenly cut blocks/sentences, pair these sentences with 50%
consecutive sentences and 50% random sentences.
This is used for none break mode
"""
# pair sentences
for
sent_id
,
sent
in
enumerate
(
dataset_index
):
next_sent_label
=
(
1
if
np
.
random
.
rand
()
>
0.5
and
sent_id
!=
len
(
dataset_index
)
-
1
else
0
)
if
next_sent_label
:
next_sent
=
dataset_index
[
sent_id
+
1
]
else
:
next_sent
=
dataset_index
[
self
.
_skip_sampling
(
len
(
dataset_index
),
[
sent_id
,
sent_id
+
1
])
]
self
.
sent_pairs
.
append
((
sent
,
next_sent
,
next_sent_label
))
# The current blocks don't include the special tokens but the
# sizes already account for this
self
.
sizes
.
append
(
3
+
sent
[
3
]
+
next_sent
[
3
])
def
_sent_to_dataset_index
(
self
,
sent_sizes
):
"""
Build index mapping block indices to the underlying dataset indices
"""
dataset_index
=
[]
ds_idx
,
ds_remaining
=
-
1
,
0
for
to_consume
in
sent_sizes
:
sent_size
=
to_consume
if
ds_remaining
==
0
:
ds_idx
+=
1
ds_remaining
=
sent_sizes
[
ds_idx
]
start_ds_idx
=
ds_idx
start_offset
=
sent_sizes
[
ds_idx
]
-
ds_remaining
while
to_consume
>
ds_remaining
:
to_consume
-=
ds_remaining
ds_idx
+=
1
ds_remaining
=
sent_sizes
[
ds_idx
]
ds_remaining
-=
to_consume
dataset_index
.
append
(
(
start_ds_idx
,
# starting index in dataset
start_offset
,
# starting offset within starting index
ds_idx
,
# ending index in dataset
sent_size
,
# sentence length
)
)
assert
ds_remaining
==
0
assert
ds_idx
==
len
(
self
.
dataset
)
-
1
return
dataset_index
def
_generate_sentence_pair
(
self
,
doc
,
doc_id
,
max_num_tokens
,
sizes
):
"""
Go through a single document and genrate sentence paris from it
"""
current_chunk
=
[]
current_length
=
0
curr
=
0
# To provide more randomness, we decrease target seq length for parts of
# samples (10% by default). Note that max_num_tokens is the hard threshold
# for batching and will never be changed.
target_seq_length
=
max_num_tokens
if
np
.
random
.
random
()
<
self
.
short_seq_prob
:
target_seq_length
=
np
.
random
.
randint
(
2
,
max_num_tokens
)
# loop through all sentences in document
while
curr
<
len
(
doc
):
sent_id
=
doc
[
curr
]
current_chunk
.
append
(
sent_id
)
current_length
=
sum
(
sizes
[
current_chunk
])
# split chunk and generate pair when exceed target_seq_length or
# finish the loop
if
curr
==
len
(
doc
)
-
1
or
current_length
>=
target_seq_length
:
# split the chunk into 2 parts
a_end
=
1
if
len
(
current_chunk
)
>
2
:
a_end
=
np
.
random
.
randint
(
1
,
len
(
current_chunk
)
-
1
)
sent_a
=
current_chunk
[:
a_end
]
len_a
=
sum
(
sizes
[
sent_a
])
# generate next sentence label, note that if there is only 1 sentence
# in current chunk, label is always 0
next_sent_label
=
(
1
if
np
.
random
.
rand
()
>
0.5
and
len
(
current_chunk
)
!=
1
else
0
)
if
not
next_sent_label
:
# if next sentence label is 0, sample sent_b from a random doc
target_b_length
=
target_seq_length
-
len_a
rand_doc_id
=
self
.
_skip_sampling
(
len
(
self
.
block_indices
),
[
doc_id
])
random_doc
=
self
.
block_indices
[
rand_doc_id
]
random_start
=
np
.
random
.
randint
(
0
,
len
(
random_doc
))
sent_b
=
[]
len_b
=
0
for
j
in
range
(
random_start
,
len
(
random_doc
)):
sent_b
.
append
(
random_doc
[
j
])
len_b
=
sum
(
sizes
[
sent_b
])
if
len_b
>=
target_b_length
:
break
# return the second part of the chunk since it's not used
num_unused_segments
=
len
(
current_chunk
)
-
a_end
curr
-=
num_unused_segments
else
:
# if next sentence label is 1, use the second part of chunk as sent_B
sent_b
=
current_chunk
[
a_end
:]
len_b
=
sum
(
sizes
[
sent_b
])
# currently sent_a and sent_B may be longer than max_num_tokens,
# truncate them and return block idx and offsets for them
sent_a
,
sent_b
=
self
.
_truncate_sentences
(
sent_a
,
sent_b
,
max_num_tokens
)
self
.
sent_pairs
.
append
((
sent_a
,
sent_b
,
next_sent_label
))
self
.
sizes
.
append
(
3
+
sent_a
[
3
]
+
sent_b
[
3
])
current_chunk
=
[]
curr
+=
1
def
_skip_sampling
(
self
,
total
,
skip_ids
):
"""
Generate a random integer which is not in skip_ids. Sample range is [0, total)
TODO: ids in skip_ids should be consecutive, we can extend it to more generic version later
"""
rand_id
=
np
.
random
.
randint
(
total
-
len
(
skip_ids
))
return
rand_id
if
rand_id
<
min
(
skip_ids
)
else
rand_id
+
len
(
skip_ids
)
def
_truncate_sentences
(
self
,
sent_a
,
sent_b
,
max_num_tokens
):
"""
Trancate a pair of sentence to limit total length under max_num_tokens
Logics:
1. Truncate longer sentence
2. Tokens to be truncated could be at the beginning or the end of the sentnce
Returns:
Truncated sentences represented by dataset idx
"""
len_a
,
len_b
=
sum
(
self
.
dataset
.
sizes
[
sent_a
]),
sum
(
self
.
dataset
.
sizes
[
sent_b
])
front_cut_a
=
front_cut_b
=
end_cut_a
=
end_cut_b
=
0
while
True
:
total_length
=
(
len_a
+
len_b
-
front_cut_a
-
front_cut_b
-
end_cut_a
-
end_cut_b
)
if
total_length
<=
max_num_tokens
:
break
if
len_a
-
front_cut_a
-
end_cut_a
>
len_b
-
front_cut_b
-
end_cut_b
:
if
np
.
random
.
rand
()
<
0.5
:
front_cut_a
+=
1
else
:
end_cut_a
+=
1
else
:
if
np
.
random
.
rand
()
<
0.5
:
front_cut_b
+=
1
else
:
end_cut_b
+=
1
# calculate ds indices as well as offsets and return
truncated_sent_a
=
self
.
_cut_sentence
(
sent_a
,
front_cut_a
,
end_cut_a
)
truncated_sent_b
=
self
.
_cut_sentence
(
sent_b
,
front_cut_b
,
end_cut_b
)
return
truncated_sent_a
,
truncated_sent_b
def
_cut_sentence
(
self
,
sent
,
front_cut
,
end_cut
):
"""
Cut a sentence based on the numbers of tokens to be cut from beginning and end
Represent the sentence as dataset idx and return
"""
start_ds_idx
,
end_ds_idx
,
offset
=
sent
[
0
],
sent
[
-
1
],
0
target_len
=
sum
(
self
.
dataset
.
sizes
[
sent
])
-
front_cut
-
end_cut
while
front_cut
>
0
:
if
self
.
dataset
.
sizes
[
start_ds_idx
]
>
front_cut
:
offset
+=
front_cut
break
else
:
front_cut
-=
self
.
dataset
.
sizes
[
start_ds_idx
]
start_ds_idx
+=
1
while
end_cut
>
0
:
if
self
.
dataset
.
sizes
[
end_ds_idx
]
>
end_cut
:
break
else
:
end_cut
-=
self
.
dataset
.
sizes
[
end_ds_idx
]
end_ds_idx
-=
1
return
start_ds_idx
,
offset
,
end_ds_idx
,
target_len
def
_fetch_block
(
self
,
start_ds_idx
,
offset
,
end_ds_idx
,
length
):
"""
Fetch a block of tokens based on its dataset idx
"""
buffer
=
torch
.
cat
(
[
self
.
dataset
[
idx
]
for
idx
in
range
(
start_ds_idx
,
end_ds_idx
+
1
)]
)
s
,
e
=
offset
,
offset
+
length
return
buffer
[
s
:
e
]
def
__getitem__
(
self
,
index
):
block1
,
block2
,
next_sent_label
=
self
.
sent_pairs
[
index
]
block1
=
self
.
_fetch_block
(
*
block1
)
block2
=
self
.
_fetch_block
(
*
block2
)
return
block1
,
block2
,
next_sent_label
def
__len__
(
self
):
return
len
(
self
.
sizes
)
@
property
def
supports_prefetch
(
self
):
return
getattr
(
self
.
dataset
,
"supports_prefetch"
,
False
)
def
prefetch
(
self
,
indices
):
prefetch_idx
=
set
()
for
index
in
indices
:
for
block1
,
block2
,
_
in
[
self
.
sent_pairs
[
index
]]:
for
ds_idx
in
range
(
block1
[
0
],
block1
[
2
]
+
1
):
prefetch_idx
.
add
(
ds_idx
)
for
ds_idx
in
range
(
block2
[
0
],
block2
[
2
]
+
1
):
prefetch_idx
.
add
(
ds_idx
)
self
.
dataset
.
prefetch
(
prefetch_idx
)
PyTorch/NLP/new-Transformer/fairseq/data/legacy/masked_lm_dataset.py
0 → 100644
View file @
c0f05c10
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import
math
from
typing
import
Dict
,
List
,
Tuple
import
numpy
as
np
import
torch
from
fairseq.data
import
Dictionary
,
FairseqDataset
,
data_utils
from
fairseq.data.concat_dataset
import
ConcatDataset
from
fairseq.data.legacy.block_pair_dataset
import
BlockPairDataset
from
fairseq.data.token_block_dataset
import
TokenBlockDataset
class
MaskedLMDataset
(
FairseqDataset
):
"""
A wrapper Dataset for masked language modelling. The dataset
wraps around TokenBlockDataset or BlockedPairDataset and creates a batch
where the input blocks are masked according to the specified masking
probability. Additionally the batch can also contain sentence level targets
if this is specified.
Args:
dataset: Dataset which generates blocks of data. Only BlockPairDataset
and TokenBlockDataset are supported.
sizes: Sentence lengths
vocab: Dictionary with the vocabulary and special tokens.
pad_idx: Id of padding token in dictionary
mask_idx: Id of mask token in dictionary
classif_token_idx: Id of classification token in dictionary. This is the
token associated with the sentence embedding (Eg: CLS for BERT)
sep_token_idx: Id of separator token in dictionary
(Eg: SEP in BERT)
seed: Seed for random number generator for reproducibility.
shuffle: Shuffle the elements before batching.
has_pairs: Specifies whether the underlying dataset
generates a pair of blocks along with a sentence_target or not.
Setting it to True assumes that the underlying dataset generates a
label for the pair of sentences which is surfaced as
sentence_target. The default value assumes a single block with no
sentence target.
segment_id: An optional segment id for filling in the segment labels
when we are in the single block setting (Eg: XLM). Default is 0.
masking_ratio: specifies what percentage of the blocks should be masked.
masking_prob: specifies the probability of a given token being
replaced with the "MASK" token.
random_token_prob: specifies the probability of a given token being
replaced by a random token from the vocabulary.
"""
def
__init__
(
self
,
dataset
:
FairseqDataset
,
sizes
:
np
.
ndarray
,
vocab
:
Dictionary
,
pad_idx
:
int
,
mask_idx
:
int
,
classif_token_idx
:
int
,
sep_token_idx
:
int
,
seed
:
int
=
1
,
shuffle
:
bool
=
True
,
has_pairs
:
bool
=
True
,
segment_id
:
int
=
0
,
masking_ratio
:
float
=
0.15
,
masking_prob
:
float
=
0.8
,
random_token_prob
:
float
=
0.1
,
):
# Make sure the input datasets are the ones supported
assert
(
isinstance
(
dataset
,
TokenBlockDataset
)
or
isinstance
(
dataset
,
BlockPairDataset
)
or
isinstance
(
dataset
,
ConcatDataset
)
),
(
"MaskedLMDataset only wraps TokenBlockDataset or BlockPairDataset or "
"ConcatDataset"
)
self
.
dataset
=
dataset
self
.
sizes
=
np
.
array
(
sizes
)
self
.
vocab
=
vocab
self
.
pad_idx
=
pad_idx
self
.
mask_idx
=
mask_idx
self
.
classif_token_idx
=
classif_token_idx
self
.
sep_token_idx
=
sep_token_idx
self
.
shuffle
=
shuffle
self
.
seed
=
seed
self
.
has_pairs
=
has_pairs
self
.
segment_id
=
segment_id
self
.
masking_ratio
=
masking_ratio
self
.
masking_prob
=
masking_prob
self
.
random_token_prob
=
random_token_prob
# If we have only one block then sizes needs to be updated to include
# the classification token
if
not
has_pairs
:
self
.
sizes
=
self
.
sizes
+
1
def
__getitem__
(
self
,
index
:
int
):
# if has_pairs, then expect 2 blocks and a sentence target
if
self
.
has_pairs
:
(
block_one
,
block_two
,
sentence_target
)
=
self
.
dataset
[
index
]
else
:
block_one
=
self
.
dataset
[
index
]
return
{
"id"
:
index
,
"block_one"
:
block_one
,
"block_two"
:
block_two
if
self
.
has_pairs
else
None
,
"sentence_target"
:
sentence_target
if
self
.
has_pairs
else
None
,
}
def
__len__
(
self
):
return
len
(
self
.
dataset
)
def
_mask_block
(
self
,
sentence
:
np
.
ndarray
,
mask_idx
:
int
,
pad_idx
:
int
,
dictionary_token_range
:
Tuple
,
):
"""
Mask tokens for Masked Language Model training
Samples mask_ratio tokens that will be predicted by LM.
Note:This function may not be efficient enough since we had multiple
conversions between np and torch, we can replace them with torch
operators later.
Args:
sentence: 1d tensor to be masked
mask_idx: index to use for masking the sentence
pad_idx: index to use for masking the target for tokens we aren't
predicting
dictionary_token_range: range of indices in dictionary which can
be used for random word replacement
(e.g. without special characters)
Return:
masked_sent: masked sentence
target: target with words which we are not predicting replaced
by pad_idx
"""
masked_sent
=
np
.
copy
(
sentence
)
sent_length
=
len
(
sentence
)
mask_num
=
math
.
ceil
(
sent_length
*
self
.
masking_ratio
)
mask
=
np
.
random
.
choice
(
sent_length
,
mask_num
,
replace
=
False
)
target
=
np
.
copy
(
sentence
)
for
i
in
range
(
sent_length
):
if
i
in
mask
:
rand
=
np
.
random
.
random
()
# replace with mask if probability is less than masking_prob
# (Eg: 0.8)
if
rand
<
self
.
masking_prob
:
masked_sent
[
i
]
=
mask_idx
# replace with random token if probability is less than
# masking_prob + random_token_prob (Eg: 0.9)
elif
rand
<
(
self
.
masking_prob
+
self
.
random_token_prob
):
# sample random token from dictionary
masked_sent
[
i
]
=
np
.
random
.
randint
(
dictionary_token_range
[
0
],
dictionary_token_range
[
1
]
)
else
:
target
[
i
]
=
pad_idx
return
masked_sent
,
target
def
_collate
(
self
,
samples
:
List
[
Dict
],
pad_idx
:
int
,
eos_idx
:
int
):
"""
Does the heavy lifting for creating a batch from the input list of
examples. The logic is as follows:
1. Mask the input blocks. In case has_pair is True then we have 2
blocks to mask.
2. Prepend the first masked block tensor with the special token
used as sentence embedding. Eg: CLS in BERT. This happens
irrespective of the value of has_pair.
3. If has_pair is True, then append the first masked block with the
special separator token (eg: SEP for BERT) and compute segment
label accordingly. In this case, also append the second masked
block with this special separator token and compute its segment
label.
4. For the targets tensor, prepend and append with padding index
accordingly.
5. Concatenate all tensors.
"""
if
len
(
samples
)
==
0
:
return
{}
# To ensure determinism, we reset the state of the PRNG after every
# batch based on the seed and the first id of the batch. This ensures
# that across epochs we get the same mask for the same example. This
# is needed for reproducibility and is how BERT does masking
# TODO: Can we add deteminism without this constraint?
with
data_utils
.
numpy_seed
(
self
.
seed
+
samples
[
0
][
"id"
]):
for
s
in
samples
:
# token range is needed for replacing with random token during
# masking
token_range
=
(
self
.
vocab
.
nspecial
,
len
(
self
.
vocab
))
# mask according to specified probabilities.
masked_blk_one
,
masked_tgt_one
=
self
.
_mask_block
(
s
[
"block_one"
],
self
.
mask_idx
,
self
.
pad_idx
,
token_range
,
)
tokens
=
np
.
concatenate
([[
self
.
classif_token_idx
],
masked_blk_one
])
targets
=
np
.
concatenate
([[
self
.
pad_idx
],
masked_tgt_one
])
segments
=
np
.
ones
(
len
(
tokens
))
*
self
.
segment_id
# if has_pairs is True then we need to add the SEP token to both
# the blocks after masking and re-compute segments based on the new
# lengths.
if
self
.
has_pairs
:
tokens_one
=
np
.
concatenate
([
tokens
,
[
self
.
sep_token_idx
]])
targets_one
=
np
.
concatenate
([
targets
,
[
self
.
pad_idx
]])
masked_blk_two
,
masked_tgt_two
=
self
.
_mask_block
(
s
[
"block_two"
],
self
.
mask_idx
,
self
.
pad_idx
,
token_range
)
tokens_two
=
np
.
concatenate
([
masked_blk_two
,
[
self
.
sep_token_idx
]])
targets_two
=
np
.
concatenate
([
masked_tgt_two
,
[
self
.
pad_idx
]])
# block + 1 sep + 1 special (CLS)
segments_one
=
np
.
zeros
(
len
(
tokens_one
))
# block + 1 sep
segments_two
=
np
.
ones
(
len
(
tokens_two
))
tokens
=
np
.
concatenate
([
tokens_one
,
tokens_two
])
targets
=
np
.
concatenate
([
targets_one
,
targets_two
])
segments
=
np
.
concatenate
([
segments_one
,
segments_two
])
s
[
"source"
]
=
torch
.
LongTensor
(
tokens
)
s
[
"segment_labels"
]
=
torch
.
LongTensor
(
segments
)
s
[
"lm_target"
]
=
torch
.
LongTensor
(
targets
)
def
merge
(
key
):
return
data_utils
.
collate_tokens
(
[
s
[
key
]
for
s
in
samples
],
pad_idx
,
eos_idx
,
left_pad
=
False
)
return
{
"id"
:
torch
.
LongTensor
([
s
[
"id"
]
for
s
in
samples
]),
"ntokens"
:
sum
(
len
(
s
[
"source"
])
for
s
in
samples
),
"net_input"
:
{
"src_tokens"
:
merge
(
"source"
),
"segment_labels"
:
merge
(
"segment_labels"
),
},
"lm_target"
:
merge
(
"lm_target"
),
"sentence_target"
:
torch
.
LongTensor
([
s
[
"sentence_target"
]
for
s
in
samples
])
if
self
.
has_pairs
else
None
,
"nsentences"
:
len
(
samples
),
}
def
collater
(
self
,
samples
:
List
[
Dict
]):
"""Merge a list of samples to form a mini-batch.
Args:
samples (List[dict]): samples to collate
Returns:
dict: a mini-batch of data
"""
return
self
.
_collate
(
samples
,
self
.
vocab
.
pad
(),
self
.
vocab
.
eos
())
def
num_tokens
(
self
,
index
:
int
):
"""
Return the number of tokens in a sample. This value is used to
enforce max-tokens during batching.
"""
return
self
.
sizes
[
index
]
def
size
(
self
,
index
:
int
):
"""
Return an example's size as a float or tuple. This value is used when
filtering a dataset with max-positions.
"""
return
self
.
sizes
[
index
]
def
ordered_indices
(
self
):
"""
Return an ordered list of indices. Batches will be constructed based
on this order.
"""
if
self
.
shuffle
:
return
np
.
random
.
permutation
(
len
(
self
))
else
:
order
=
[
np
.
arange
(
len
(
self
))]
order
.
append
(
self
.
sizes
)
return
np
.
lexsort
(
order
)
@
property
def
supports_prefetch
(
self
):
return
getattr
(
self
.
dataset
,
"supports_prefetch"
,
False
)
def
prefetch
(
self
,
indices
):
self
.
dataset
.
prefetch
(
indices
)
PyTorch/NLP/new-Transformer/fairseq/data/legacy/masked_lm_dictionary.py
0 → 100644
View file @
c0f05c10
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from
fairseq.data
import
Dictionary
class
MaskedLMDictionary
(
Dictionary
):
"""
Dictionary for Masked Language Modelling tasks. This extends Dictionary by
adding the mask symbol.
"""
def
__init__
(
self
,
pad
=
"<pad>"
,
eos
=
"</s>"
,
unk
=
"<unk>"
,
mask
=
"<mask>"
,
):
super
().
__init__
(
pad
=
pad
,
eos
=
eos
,
unk
=
unk
)
self
.
mask_word
=
mask
self
.
mask_index
=
self
.
add_symbol
(
mask
)
self
.
nspecial
=
len
(
self
.
symbols
)
def
mask
(
self
):
"""Helper to get index of mask symbol"""
return
self
.
mask_index
class
BertDictionary
(
MaskedLMDictionary
):
"""
Dictionary for BERT task. This extends MaskedLMDictionary by adding support
for cls and sep symbols.
"""
def
__init__
(
self
,
pad
=
"<pad>"
,
eos
=
"</s>"
,
unk
=
"<unk>"
,
mask
=
"<mask>"
,
cls
=
"<cls>"
,
sep
=
"<sep>"
,
):
super
().
__init__
(
pad
=
pad
,
eos
=
eos
,
unk
=
unk
,
mask
=
mask
)
self
.
cls_word
=
cls
self
.
sep_word
=
sep
self
.
cls_index
=
self
.
add_symbol
(
cls
)
self
.
sep_index
=
self
.
add_symbol
(
sep
)
self
.
nspecial
=
len
(
self
.
symbols
)
def
cls
(
self
):
"""Helper to get index of cls symbol"""
return
self
.
cls_index
def
sep
(
self
):
"""Helper to get index of sep symbol"""
return
self
.
sep_index
PyTorch/NLP/new-Transformer/fairseq/data/list_dataset.py
0 → 100644
View file @
c0f05c10
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from
.
import
BaseWrapperDataset
class
ListDataset
(
BaseWrapperDataset
):
def
__init__
(
self
,
dataset
,
sizes
=
None
):
super
().
__init__
(
dataset
)
self
.
_sizes
=
sizes
def
__iter__
(
self
):
for
x
in
self
.
dataset
:
yield
x
def
collater
(
self
,
samples
):
return
samples
@
property
def
sizes
(
self
):
return
self
.
_sizes
def
num_tokens
(
self
,
index
):
return
self
.
sizes
[
index
]
def
size
(
self
,
index
):
return
self
.
sizes
[
index
]
def
set_epoch
(
self
,
epoch
):
pass
PyTorch/NLP/new-Transformer/fairseq/data/lm_context_window_dataset.py
0 → 100644
View file @
c0f05c10
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import
numpy
as
np
import
torch
from
typing
import
Dict
from
fairseq.data.monolingual_dataset
import
MonolingualDataset
from
.
import
FairseqDataset
class
LMContextWindowDataset
(
FairseqDataset
):
"""
Wraps a MonolingualDataset and provides more context for evaluation.
Each item in the new dataset will have a maximum size of
``tokens_per_sample + context_window``.
Args:
dataset: dataset to wrap
tokens_per_sample (int): the max number of tokens in each dataset item
context_window (int): the number of accumulated tokens to add to each
dataset item
pad_idx (int): padding symbol
"""
def
__init__
(
self
,
dataset
:
MonolingualDataset
,
tokens_per_sample
:
int
,
context_window
:
int
,
pad_idx
:
int
,
):
assert
context_window
>
0
self
.
dataset
=
dataset
self
.
tokens_per_sample
=
tokens_per_sample
self
.
context_window
=
context_window
self
.
pad_idx
=
pad_idx
self
.
prev_tokens
=
np
.
empty
([
0
])
def
__getitem__
(
self
,
index
):
return
self
.
dataset
[
index
]
def
__len__
(
self
):
return
len
(
self
.
dataset
)
def
collater
(
self
,
samples
)
->
Dict
:
sample
=
self
.
dataset
.
collater
(
samples
)
pad
=
self
.
pad_idx
max_sample_len
=
self
.
tokens_per_sample
+
self
.
context_window
bsz
,
tsz
=
sample
[
"net_input"
][
"src_tokens"
].
shape
start_idxs
=
[
0
]
*
bsz
toks
=
sample
[
"net_input"
][
"src_tokens"
]
lengths
=
sample
[
"net_input"
][
"src_lengths"
]
tgt
=
sample
[
"target"
]
new_toks
=
np
.
empty
([
bsz
,
tsz
+
self
.
context_window
],
dtype
=
np
.
int64
)
new_tgt
=
np
.
full
([
bsz
,
tsz
+
self
.
context_window
],
pad
,
dtype
=
np
.
int64
)
sample_lens
=
toks
.
ne
(
pad
).
long
().
sum
(
dim
=
1
).
cpu
()
for
i
in
range
(
bsz
):
sample_len
=
sample_lens
[
i
]
extra
=
len
(
self
.
prev_tokens
)
+
sample_len
-
max_sample_len
if
extra
>
0
:
self
.
prev_tokens
=
self
.
prev_tokens
[
extra
:]
pads
=
np
.
full
(
self
.
context_window
-
len
(
self
.
prev_tokens
),
pad
)
new_toks
[
i
]
=
np
.
concatenate
([
self
.
prev_tokens
,
toks
[
i
].
numpy
(),
pads
])
new_tgt
[
i
,
len
(
self
.
prev_tokens
)
:
len
(
self
.
prev_tokens
)
+
len
(
tgt
[
i
])
]
=
tgt
[
i
]
start_idxs
[
i
]
=
len
(
self
.
prev_tokens
)
lengths
[
i
]
+=
len
(
self
.
prev_tokens
)
self
.
prev_tokens
=
new_toks
[
i
][
new_toks
[
i
]
!=
pad
][
-
self
.
context_window
:]
sample
[
"net_input"
][
"src_tokens"
]
=
torch
.
from_numpy
(
new_toks
)
sample
[
"target"
]
=
torch
.
from_numpy
(
new_tgt
)
sample
[
"start_indices"
]
=
start_idxs
return
sample
def
num_tokens
(
self
,
index
):
return
self
.
dataset
.
num_tokens
(
index
)
def
size
(
self
,
index
):
return
self
.
dataset
.
size
(
index
)
def
ordered_indices
(
self
):
# NOTE we don't shuffle the data to retain access to the previous dataset elements
return
np
.
arange
(
len
(
self
.
dataset
))
@
property
def
supports_prefetch
(
self
):
return
getattr
(
self
.
dataset
,
"supports_prefetch"
,
False
)
def
prefetch
(
self
,
indices
):
return
self
.
dataset
.
prefetch
(
indices
)
PyTorch/NLP/new-Transformer/fairseq/data/lru_cache_dataset.py
0 → 100644
View file @
c0f05c10
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from
functools
import
lru_cache
from
.
import
BaseWrapperDataset
class
LRUCacheDataset
(
BaseWrapperDataset
):
def
__init__
(
self
,
dataset
,
token
=
None
):
super
().
__init__
(
dataset
)
@
lru_cache
(
maxsize
=
8
)
def
__getitem__
(
self
,
index
):
return
self
.
dataset
[
index
]
@
lru_cache
(
maxsize
=
8
)
def
collater
(
self
,
samples
):
return
self
.
dataset
.
collater
(
samples
)
PyTorch/NLP/new-Transformer/fairseq/data/mask_tokens_dataset.py
0 → 100644
View file @
c0f05c10
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from
functools
import
lru_cache
import
numpy
as
np
import
torch
from
fairseq.data
import
Dictionary
,
data_utils
from
.
import
BaseWrapperDataset
,
LRUCacheDataset
class
MaskTokensDataset
(
BaseWrapperDataset
):
"""
A wrapper Dataset for masked language modeling.
Input items are masked according to the specified masking probability.
Args:
dataset: Dataset to wrap.
sizes: Sentence lengths
vocab: Dictionary with the vocabulary and special tokens.
pad_idx: Id of pad token in vocab
mask_idx: Id of mask token in vocab
return_masked_tokens: controls whether to return the non-masked tokens
(the default) or to return a tensor with the original masked token
IDs (and *pad_idx* elsewhere). The latter is useful as targets for
masked LM training.
seed: Seed for random number generator for reproducibility.
mask_prob: probability of replacing a token with *mask_idx*.
leave_unmasked_prob: probability that a masked token is unmasked.
random_token_prob: probability of replacing a masked token with a
random token from the vocabulary.
freq_weighted_replacement: sample random replacement words based on
word frequencies in the vocab.
mask_whole_words: only mask whole words. This should be a byte mask
over vocab indices, indicating whether it is the beginning of a
word. We will extend any mask to encompass the whole word.
bpe: BPE to use for whole-word masking.
mask_multiple_length : repeat each mask index multiple times. Default
value is 1.
mask_stdev : standard deviation of masks distribution in case of
multiple masking. Default value is 0.
"""
@
classmethod
def
apply_mask
(
cls
,
dataset
:
torch
.
utils
.
data
.
Dataset
,
*
args
,
**
kwargs
):
"""Return the source and target datasets for masked LM training."""
dataset
=
LRUCacheDataset
(
dataset
)
return
(
LRUCacheDataset
(
cls
(
dataset
,
*
args
,
**
kwargs
,
return_masked_tokens
=
False
)),
LRUCacheDataset
(
cls
(
dataset
,
*
args
,
**
kwargs
,
return_masked_tokens
=
True
)),
)
def
__init__
(
self
,
dataset
:
torch
.
utils
.
data
.
Dataset
,
vocab
:
Dictionary
,
pad_idx
:
int
,
mask_idx
:
int
,
return_masked_tokens
:
bool
=
False
,
seed
:
int
=
1
,
mask_prob
:
float
=
0.15
,
leave_unmasked_prob
:
float
=
0.1
,
random_token_prob
:
float
=
0.1
,
freq_weighted_replacement
:
bool
=
False
,
mask_whole_words
:
torch
.
Tensor
=
None
,
mask_multiple_length
:
int
=
1
,
mask_stdev
:
float
=
0.0
,
):
assert
0.0
<
mask_prob
<
1.0
assert
0.0
<=
random_token_prob
<=
1.0
assert
0.0
<=
leave_unmasked_prob
<=
1.0
assert
random_token_prob
+
leave_unmasked_prob
<=
1.0
assert
mask_multiple_length
>=
1
assert
mask_stdev
>=
0.0
self
.
dataset
=
dataset
self
.
vocab
=
vocab
self
.
pad_idx
=
pad_idx
self
.
mask_idx
=
mask_idx
self
.
return_masked_tokens
=
return_masked_tokens
self
.
seed
=
seed
self
.
mask_prob
=
mask_prob
self
.
leave_unmasked_prob
=
leave_unmasked_prob
self
.
random_token_prob
=
random_token_prob
self
.
mask_whole_words
=
mask_whole_words
self
.
mask_multiple_length
=
mask_multiple_length
self
.
mask_stdev
=
mask_stdev
if
random_token_prob
>
0.0
:
if
freq_weighted_replacement
:
weights
=
np
.
array
(
self
.
vocab
.
count
)
else
:
weights
=
np
.
ones
(
len
(
self
.
vocab
))
weights
[:
self
.
vocab
.
nspecial
]
=
0
self
.
weights
=
weights
/
weights
.
sum
()
self
.
epoch
=
0
@
property
def
can_reuse_epoch_itr_across_epochs
(
self
):
return
True
# only the noise changes, not item sizes
def
set_epoch
(
self
,
epoch
,
**
unused
):
super
().
set_epoch
(
epoch
)
self
.
epoch
=
epoch
def
__getitem__
(
self
,
index
:
int
):
return
self
.
__getitem_cached__
(
self
.
seed
,
self
.
epoch
,
index
)
@
lru_cache
(
maxsize
=
8
)
def
__getitem_cached__
(
self
,
seed
:
int
,
epoch
:
int
,
index
:
int
):
with
data_utils
.
numpy_seed
(
self
.
seed
,
self
.
epoch
,
index
):
item
=
self
.
dataset
[
index
]
sz
=
len
(
item
)
assert
(
self
.
mask_idx
not
in
item
),
"Dataset contains mask_idx (={}), this is not expected!"
.
format
(
self
.
mask_idx
,
)
if
self
.
mask_whole_words
is
not
None
:
word_begins_mask
=
self
.
mask_whole_words
.
gather
(
0
,
item
)
word_begins_idx
=
word_begins_mask
.
nonzero
().
view
(
-
1
)
sz
=
len
(
word_begins_idx
)
words
=
np
.
split
(
word_begins_mask
,
word_begins_idx
)[
1
:]
assert
len
(
words
)
==
sz
word_lens
=
list
(
map
(
len
,
words
))
# decide elements to mask
mask
=
np
.
full
(
sz
,
False
)
num_mask
=
int
(
# add a random number for probabilistic rounding
self
.
mask_prob
*
sz
/
float
(
self
.
mask_multiple_length
)
+
np
.
random
.
rand
()
)
# multiple masking as described in the vq-wav2vec paper (https://arxiv.org/abs/1910.05453)
mask_idc
=
np
.
random
.
choice
(
sz
,
num_mask
,
replace
=
False
)
if
self
.
mask_stdev
>
0.0
:
lengths
=
np
.
random
.
normal
(
self
.
mask_multiple_length
,
self
.
mask_stdev
,
size
=
num_mask
)
lengths
=
[
max
(
0
,
int
(
round
(
x
)))
for
x
in
lengths
]
mask_idc
=
np
.
asarray
(
[
mask_idc
[
j
]
+
offset
for
j
in
range
(
len
(
mask_idc
))
for
offset
in
range
(
lengths
[
j
])
],
dtype
=
np
.
int64
,
)
else
:
mask_idc
=
np
.
concatenate
(
[
mask_idc
+
i
for
i
in
range
(
self
.
mask_multiple_length
)]
)
mask_idc
=
mask_idc
[
mask_idc
<
len
(
mask
)]
try
:
mask
[
mask_idc
]
=
True
except
:
# something wrong
print
(
"Assigning mask indexes {} to mask {} failed!"
.
format
(
mask_idc
,
mask
)
)
raise
if
self
.
return_masked_tokens
:
# exit early if we're just returning the masked tokens
# (i.e., the targets for masked LM training)
if
self
.
mask_whole_words
is
not
None
:
mask
=
np
.
repeat
(
mask
,
word_lens
)
new_item
=
np
.
full
(
len
(
mask
),
self
.
pad_idx
)
new_item
[
mask
]
=
item
[
torch
.
from_numpy
(
mask
.
astype
(
np
.
uint8
))
==
1
]
return
torch
.
from_numpy
(
new_item
)
# decide unmasking and random replacement
rand_or_unmask_prob
=
self
.
random_token_prob
+
self
.
leave_unmasked_prob
if
rand_or_unmask_prob
>
0.0
:
rand_or_unmask
=
mask
&
(
np
.
random
.
rand
(
sz
)
<
rand_or_unmask_prob
)
if
self
.
random_token_prob
==
0.0
:
unmask
=
rand_or_unmask
rand_mask
=
None
elif
self
.
leave_unmasked_prob
==
0.0
:
unmask
=
None
rand_mask
=
rand_or_unmask
else
:
unmask_prob
=
self
.
leave_unmasked_prob
/
rand_or_unmask_prob
decision
=
np
.
random
.
rand
(
sz
)
<
unmask_prob
unmask
=
rand_or_unmask
&
decision
rand_mask
=
rand_or_unmask
&
(
~
decision
)
else
:
unmask
=
rand_mask
=
None
if
unmask
is
not
None
:
mask
=
mask
^
unmask
if
self
.
mask_whole_words
is
not
None
:
mask
=
np
.
repeat
(
mask
,
word_lens
)
new_item
=
np
.
copy
(
item
)
new_item
[
mask
]
=
self
.
mask_idx
if
rand_mask
is
not
None
:
num_rand
=
rand_mask
.
sum
()
if
num_rand
>
0
:
if
self
.
mask_whole_words
is
not
None
:
rand_mask
=
np
.
repeat
(
rand_mask
,
word_lens
)
num_rand
=
rand_mask
.
sum
()
new_item
[
rand_mask
]
=
np
.
random
.
choice
(
len
(
self
.
vocab
),
num_rand
,
p
=
self
.
weights
,
)
return
torch
.
from_numpy
(
new_item
)
PyTorch/NLP/new-Transformer/fairseq/data/monolingual_dataset.py
0 → 100644
View file @
c0f05c10
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import
numpy
as
np
import
torch
from
.
import
FairseqDataset
,
data_utils
def
collate
(
samples
,
pad_idx
,
eos_idx
,
fixed_pad_length
=
None
,
pad_to_bsz
=
None
):
if
len
(
samples
)
==
0
:
return
{}
def
merge
(
key
,
is_list
=
False
):
if
is_list
:
res
=
[]
for
i
in
range
(
len
(
samples
[
0
][
key
])):
res
.
append
(
data_utils
.
collate_tokens
(
[
s
[
key
][
i
]
for
s
in
samples
],
pad_idx
,
eos_idx
,
left_pad
=
False
,
pad_to_length
=
fixed_pad_length
,
pad_to_bsz
=
pad_to_bsz
,
)
)
return
res
else
:
return
data_utils
.
collate_tokens
(
[
s
[
key
]
for
s
in
samples
],
pad_idx
,
eos_idx
,
left_pad
=
False
,
pad_to_length
=
fixed_pad_length
,
pad_to_bsz
=
pad_to_bsz
,
)
src_tokens
=
merge
(
"source"
)
if
samples
[
0
][
"target"
]
is
not
None
:
is_target_list
=
isinstance
(
samples
[
0
][
"target"
],
list
)
target
=
merge
(
"target"
,
is_target_list
)
else
:
target
=
src_tokens
return
{
"id"
:
torch
.
LongTensor
([
s
[
"id"
]
for
s
in
samples
]),
"nsentences"
:
len
(
samples
),
"ntokens"
:
sum
(
len
(
s
[
"source"
])
for
s
in
samples
),
"net_input"
:
{
"src_tokens"
:
src_tokens
,
"src_lengths"
:
torch
.
LongTensor
([
s
[
"source"
].
numel
()
for
s
in
samples
]),
},
"target"
:
target
,
}
class
MonolingualDataset
(
FairseqDataset
):
"""
A wrapper around torch.utils.data.Dataset for monolingual data.
Args:
dataset (torch.utils.data.Dataset): dataset to wrap
sizes (List[int]): sentence lengths
vocab (~fairseq.data.Dictionary): vocabulary
shuffle (bool, optional): shuffle the elements before batching
(default: True).
"""
def
__init__
(
self
,
dataset
,
sizes
,
src_vocab
,
tgt_vocab
=
None
,
add_eos_for_other_targets
=
False
,
shuffle
=
False
,
targets
=
None
,
add_bos_token
=
False
,
fixed_pad_length
=
None
,
pad_to_bsz
=
None
,
src_lang_idx
=
None
,
tgt_lang_idx
=
None
,
):
self
.
dataset
=
dataset
self
.
sizes
=
np
.
array
(
sizes
)
self
.
vocab
=
src_vocab
self
.
tgt_vocab
=
tgt_vocab
or
src_vocab
self
.
add_eos_for_other_targets
=
add_eos_for_other_targets
self
.
shuffle
=
shuffle
self
.
add_bos_token
=
add_bos_token
self
.
fixed_pad_length
=
fixed_pad_length
self
.
pad_to_bsz
=
pad_to_bsz
self
.
src_lang_idx
=
src_lang_idx
self
.
tgt_lang_idx
=
tgt_lang_idx
assert
targets
is
None
or
all
(
t
in
{
"self"
,
"future"
,
"past"
}
for
t
in
targets
),
"targets must be none or one of 'self', 'future', 'past'"
if
targets
is
not
None
and
len
(
targets
)
==
0
:
targets
=
None
self
.
targets
=
targets
def
__getitem__
(
self
,
index
):
if
self
.
targets
is
not
None
:
# *future_target* is the original sentence
# *source* is shifted right by 1 (maybe left-padded with eos)
# *past_target* is shifted right by 2 (left-padded as needed)
#
# Left-to-right language models should condition on *source* and
# predict *future_target*.
# Right-to-left language models should condition on *source* and
# predict *past_target*.
source
,
future_target
,
past_target
=
self
.
dataset
[
index
]
source
,
target
=
self
.
_make_source_target
(
source
,
future_target
,
past_target
)
else
:
source
=
self
.
dataset
[
index
]
target
=
None
source
,
target
=
self
.
_maybe_add_bos
(
source
,
target
)
return
{
"id"
:
index
,
"source"
:
source
,
"target"
:
target
}
def
__len__
(
self
):
return
len
(
self
.
dataset
)
def
_make_source_target
(
self
,
source
,
future_target
,
past_target
):
if
self
.
targets
is
not
None
:
target
=
[]
if
(
self
.
add_eos_for_other_targets
and
((
"self"
in
self
.
targets
)
or
(
"past"
in
self
.
targets
))
and
source
[
-
1
]
!=
self
.
vocab
.
eos
()
):
# append eos at the end of source
source
=
torch
.
cat
([
source
,
source
.
new
([
self
.
vocab
.
eos
()])])
if
"future"
in
self
.
targets
:
future_target
=
torch
.
cat
(
[
future_target
,
future_target
.
new
([
self
.
vocab
.
pad
()])]
)
if
"past"
in
self
.
targets
:
# first token is before the start of sentence which is only used in "none" break mode when
# add_eos_for_other_targets is False
past_target
=
torch
.
cat
(
[
past_target
.
new
([
self
.
vocab
.
pad
()]),
past_target
[
1
:],
source
[
-
2
,
None
],
]
)
for
t
in
self
.
targets
:
if
t
==
"self"
:
target
.
append
(
source
)
elif
t
==
"future"
:
target
.
append
(
future_target
)
elif
t
==
"past"
:
target
.
append
(
past_target
)
else
:
raise
Exception
(
"invalid target "
+
t
)
if
len
(
target
)
==
1
:
target
=
target
[
0
]
else
:
target
=
future_target
return
source
,
self
.
_filter_vocab
(
target
)
def
_maybe_add_bos
(
self
,
source
,
target
):
if
self
.
add_bos_token
:
source
=
torch
.
cat
([
source
.
new
([
self
.
vocab
.
bos
()]),
source
])
if
target
is
not
None
:
target
=
torch
.
cat
([
target
.
new
([
self
.
tgt_vocab
.
bos
()]),
target
])
return
source
,
target
def
num_tokens_vec
(
self
,
indices
):
"""Return the number of tokens for a set of positions defined by indices.
This value is used to enforce ``--max-tokens`` during batching."""
return
self
.
sizes
[
indices
]
def
_filter_vocab
(
self
,
target
):
if
len
(
self
.
tgt_vocab
)
!=
len
(
self
.
vocab
):
def
_filter
(
target
):
mask
=
target
.
ge
(
len
(
self
.
tgt_vocab
))
if
mask
.
any
():
target
[
mask
]
=
self
.
tgt_vocab
.
unk
()
return
target
if
isinstance
(
target
,
list
):
return
[
_filter
(
t
)
for
t
in
target
]
return
_filter
(
target
)
return
target
def
collater
(
self
,
samples
):
"""Merge a list of samples to form a mini-batch.
Args:
samples (List[dict]): samples to collate
Returns:
dict: a mini-batch with the following keys:
- `id` (LongTensor): example IDs in the original input order
- `ntokens` (int): total number of tokens in the batch
- `net_input` (dict): the input to the Model, containing keys:
- `src_tokens` (LongTensor): a padded 2D Tensor of tokens in
the source sentence of shape `(bsz, src_len)`. Padding will
appear on the right.
- `target` (LongTensor): a padded 2D Tensor of tokens in the
target sentence of shape `(bsz, tgt_len)`. Padding will appear
on the right.
"""
return
collate
(
samples
,
self
.
vocab
.
pad
(),
self
.
vocab
.
eos
(),
self
.
fixed_pad_length
,
self
.
pad_to_bsz
,
)
def
num_tokens
(
self
,
index
):
"""Return the number of tokens in a sample. This value is used to
enforce ``--max-tokens`` during batching."""
return
self
.
sizes
[
index
]
def
size
(
self
,
index
):
"""Return an example's size as a float or tuple. This value is used when
filtering a dataset with ``--max-positions``."""
return
self
.
sizes
[
index
]
def
ordered_indices
(
self
):
"""Return an ordered list of indices. Batches will be constructed based
on this order."""
if
self
.
shuffle
:
order
=
[
np
.
random
.
permutation
(
len
(
self
))]
else
:
order
=
[
np
.
arange
(
len
(
self
))]
order
.
append
(
self
.
sizes
)
return
np
.
lexsort
(
order
)
@
property
def
supports_prefetch
(
self
):
return
getattr
(
self
.
dataset
,
"supports_prefetch"
,
False
)
def
prefetch
(
self
,
indices
):
self
.
dataset
.
prefetch
(
indices
)
PyTorch/NLP/new-Transformer/fairseq/data/multi_corpus_dataset.py
0 → 100644
View file @
c0f05c10
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import
logging
import
time
from
collections
import
OrderedDict
from
typing
import
Dict
,
List
,
Optional
import
numpy
as
np
from
fairseq.data
import
data_utils
from
.
import
FairseqDataset
logger
=
logging
.
getLogger
(
__name__
)
class
MultiCorpusDataset
(
FairseqDataset
):
"""
Stores multiple instances of FairseqDataset together.
Unless batch_sample=True, requires each instance
to be the same dataset, as the collate method needs to work on batches with
samples from each dataset.
Allows specifying a distribution over the datasets to use. Note that unlike
MultiCorpusSampledDataset, this distribution allows sampling for each item,
rather than on a batch level. Note that datasets with sampling probabilty
of 0 will be skipped.
Each time ordered_indices() is called, a new sample is generated with
the specified distribution.
Args:
datasets: a OrderedDict of FairseqDataset instances.
distribution: a List containing the probability of getting an utterance from
corresponding dataset
seed: random seed for sampling the datsets
sort_indices: if true, will sort the ordered indices by size
batch_sample: if true, will ensure each batch is from a single dataset
"""
def
__init__
(
self
,
datasets
:
Dict
[
str
,
FairseqDataset
],
distribution
:
List
[
float
],
seed
:
int
,
sort_indices
:
bool
=
False
,
batch_sample
:
bool
=
False
,
distributed_rank
:
Optional
[
int
]
=
None
,
):
super
().
__init__
()
assert
isinstance
(
datasets
,
OrderedDict
)
assert
len
(
datasets
)
==
len
(
distribution
)
assert
sum
(
distribution
)
==
1
self
.
datasets
=
datasets
self
.
distribution
=
distribution
self
.
seed
=
seed
self
.
sort_indices
=
sort_indices
self
.
batch_sample
=
batch_sample
self
.
distributed_rank
=
distributed_rank
# Avoid repeated conversions to list later
self
.
dataset_list
=
list
(
datasets
.
values
())
self
.
total_num_instances
=
0
first_dataset
=
self
.
dataset_list
[
0
]
self
.
num_instances_per_dataset
=
[]
self
.
dataset_offsets
=
[]
for
i
,
dataset
in
enumerate
(
self
.
dataset_list
):
assert
isinstance
(
dataset
,
FairseqDataset
)
assert
type
(
dataset
)
is
type
(
first_dataset
)
self
.
num_instances_per_dataset
.
append
(
0
if
self
.
distribution
[
i
]
==
0
else
len
(
dataset
)
)
self
.
dataset_offsets
.
append
(
self
.
total_num_instances
)
self
.
total_num_instances
+=
self
.
num_instances_per_dataset
[
i
]
def
ordered_indices
(
self
):
start
=
time
.
time
()
with
data_utils
.
numpy_seed
(
self
.
seed
,
self
.
epoch
):
logger
.
info
(
f
"sampling new dataset with seed
{
self
.
seed
}
epoch
{
self
.
epoch
}
"
)
sampled_indices
=
[]
num_selected_instances
=
0
# For each dataset i, sample self.distribution[i] * self.total_num_instances
for
i
,
key
in
enumerate
(
self
.
datasets
):
if
self
.
distribution
[
i
]
==
0
:
# skip dataset if sampling probability is 0
continue
if
i
<
len
(
self
.
datasets
)
-
1
:
num_instances
=
int
(
self
.
distribution
[
i
]
*
self
.
total_num_instances
)
high
=
self
.
dataset_offsets
[
i
+
1
]
else
:
num_instances
=
self
.
total_num_instances
-
num_selected_instances
high
=
self
.
total_num_instances
logger
.
info
(
f
"sampling
{
num_instances
}
from
{
key
}
dataset"
)
num_selected_instances
+=
num_instances
# First, add k copies of the dataset where k = num_instances // len(dataset).
# This ensures an equal distribution of the data points as much as possible.
# For the remaining entries randomly sample them
dataset_size
=
len
(
self
.
datasets
[
key
])
num_copies
=
num_instances
//
dataset_size
dataset_indices
=
(
np
.
random
.
permutation
(
high
-
self
.
dataset_offsets
[
i
])
+
self
.
dataset_offsets
[
i
]
)[:
num_instances
-
num_copies
*
dataset_size
]
if
num_copies
>
0
:
sampled_indices
+=
list
(
np
.
concatenate
(
(
np
.
repeat
(
np
.
arange
(
self
.
dataset_offsets
[
i
],
high
),
num_copies
),
dataset_indices
,
)
)
)
else
:
sampled_indices
+=
list
(
dataset_indices
)
assert
(
len
(
sampled_indices
)
==
self
.
total_num_instances
),
f
"
{
len
(
sampled_indices
)
}
vs
{
self
.
total_num_instances
}
"
np
.
random
.
shuffle
(
sampled_indices
)
if
self
.
sort_indices
:
sampled_indices
.
sort
(
key
=
lambda
i
:
self
.
num_tokens
(
i
))
logger
.
info
(
"multi_corpus_dataset ordered_indices took {}s"
.
format
(
time
.
time
()
-
start
)
)
return
np
.
array
(
sampled_indices
,
dtype
=
np
.
int64
)
def
_map_index
(
self
,
index
:
int
):
"""
If dataset A has length N and dataset B has length M
then index 1 maps to index 1 of dataset A, and index N + 1
maps to index 1 of B.
"""
counter
=
0
for
num_instances
,
key
in
zip
(
self
.
num_instances_per_dataset
,
self
.
datasets
):
if
index
<
counter
+
num_instances
:
return
index
-
counter
,
key
counter
+=
num_instances
raise
ValueError
(
"Invalid index: {}, max: {}"
.
format
(
index
,
self
.
total_num_instances
)
)
def
__len__
(
self
):
"""
Length of this dataset is the sum of individual datasets
"""
return
self
.
total_num_instances
def
__getitem__
(
self
,
index
):
new_index
,
key
=
self
.
_map_index
(
index
)
try
:
item
=
self
.
datasets
[
key
][
new_index
]
item
[
"full_id"
]
=
index
return
item
except
Exception
as
e
:
e
.
args
=
(
f
"Error from
{
key
}
dataset"
,
*
e
.
args
)
raise
def
collater
(
self
,
samples
):
"""
If we are doing batch sampling, then pick the right collater to use.
Otherwise we assume all collaters are the same.
"""
if
len
(
samples
)
==
0
:
return
None
if
"full_id"
in
samples
[
0
]:
_
,
key
=
self
.
_map_index
(
samples
[
0
][
"full_id"
])
try
:
batch
=
self
.
datasets
[
key
].
collater
(
samples
)
except
Exception
:
print
(
f
"Collating failed for key
{
key
}
"
,
flush
=
True
)
raise
return
batch
else
:
# Subclasses may override __getitem__ to not specify full_id
return
list
(
self
.
datasets
.
values
())[
0
].
collater
(
samples
)
def
num_tokens
(
self
,
index
:
int
):
index
,
key
=
self
.
_map_index
(
index
)
return
self
.
datasets
[
key
].
num_tokens
(
index
)
def
size
(
self
,
index
:
int
):
index
,
key
=
self
.
_map_index
(
index
)
return
self
.
datasets
[
key
].
size
(
index
)
@
property
def
can_reuse_epoch_itr_across_epochs
(
self
):
return
False
def
set_epoch
(
self
,
epoch
,
**
unused
):
super
().
set_epoch
(
epoch
)
logger
.
info
(
f
"setting epoch of multi_corpus_dataset to
{
epoch
}
"
)
self
.
epoch
=
epoch
@
property
def
supports_prefetch
(
self
):
return
False
@
property
def
supports_fetch_outside_dataloader
(
self
):
return
all
(
self
.
datasets
[
key
].
supports_fetch_outside_dataloader
for
key
in
self
.
datasets
)
def
batch_by_size
(
self
,
indices
,
max_tokens
=
None
,
max_sentences
=
None
,
required_batch_size_multiple
=
1
,
):
if
not
self
.
batch_sample
:
return
super
().
batch_by_size
(
indices
,
max_tokens
,
max_sentences
,
required_batch_size_multiple
)
dataset_indices
=
{
key
:
[]
for
key
in
self
.
datasets
}
for
i
in
indices
:
_
,
key
=
self
.
_map_index
(
i
)
dataset_indices
[
key
].
append
(
i
)
batches
=
[]
for
key
in
dataset_indices
:
cur_batches
=
super
().
batch_by_size
(
np
.
array
(
dataset_indices
[
key
],
dtype
=
np
.
int64
),
max_tokens
,
max_sentences
,
required_batch_size_multiple
,
)
logger
.
info
(
f
"Created
{
len
(
cur_batches
)
}
batches for dataset
{
key
}
"
)
batches
+=
cur_batches
# If this dataset is used in a distributed training setup,
# then shuffle such that the order is seeded by the distributed rank
# as well
if
self
.
distributed_rank
is
not
None
:
with
data_utils
.
numpy_seed
(
self
.
seed
,
self
.
epoch
,
self
.
distributed_rank
):
np
.
random
.
shuffle
(
batches
)
return
batches
PyTorch/NLP/new-Transformer/fairseq/data/multi_corpus_sampled_dataset.py
0 → 100644
View file @
c0f05c10
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from
collections
import
OrderedDict
from
typing
import
Callable
,
Dict
,
List
import
numpy
as
np
from
.
import
FairseqDataset
def
uniform_sampler
(
x
):
# Sample from uniform distribution
return
np
.
random
.
choice
(
x
,
1
).
item
()
class
MultiCorpusSampledDataset
(
FairseqDataset
):
"""
Stores multiple instances of FairseqDataset together and in every iteration
creates a batch by first sampling a dataset according to a specified
probability distribution and then getting instances from that dataset.
Args:
datasets: an OrderedDict of FairseqDataset instances.
sampling_func: A function for sampling over list of dataset keys.
The default strategy is to sample uniformly.
"""
def
__init__
(
self
,
datasets
:
Dict
[
str
,
FairseqDataset
],
sampling_func
:
Callable
[[
List
],
int
]
=
None
,
):
super
().
__init__
()
assert
isinstance
(
datasets
,
OrderedDict
)
self
.
datasets
=
datasets
if
sampling_func
is
None
:
sampling_func
=
uniform_sampler
self
.
sampling_func
=
sampling_func
self
.
total_num_instances
=
0
for
_
,
dataset
in
datasets
.
items
():
assert
isinstance
(
dataset
,
FairseqDataset
)
self
.
total_num_instances
+=
len
(
dataset
)
self
.
_ordered_indices
=
None
def
__len__
(
self
):
"""
Length of this dataset is the sum of individual datasets
"""
return
self
.
total_num_instances
def
ordered_indices
(
self
):
"""
Ordered indices for batching. Here we call the underlying
dataset's ordered_indices() so that we get the same random ordering
as we would have from using the underlying dataset directly.
"""
if
self
.
_ordered_indices
is
None
:
self
.
_ordered_indices
=
OrderedDict
(
[
(
key
,
dataset
.
ordered_indices
())
for
key
,
dataset
in
self
.
datasets
.
items
()
]
)
return
np
.
arange
(
len
(
self
))
def
_map_index_to_dataset
(
self
,
key
:
int
,
index
:
int
):
"""
Different underlying datasets have different lengths. In order to ensure
we are not accessing an index outside the range of the current dataset
size, we wrap around. This function should be called after we have
created an ordering for this and all underlying datasets.
"""
assert
(
self
.
_ordered_indices
is
not
None
),
"Must call MultiCorpusSampledDataset.ordered_indices() first"
mapped_index
=
index
%
len
(
self
.
datasets
[
key
])
return
self
.
_ordered_indices
[
key
][
mapped_index
]
def
__getitem__
(
self
,
index
:
int
):
"""
Get the item associated with index from each underlying dataset.
Since index is in the range of [0, TotalNumInstances], we need to
map the index to the dataset before retrieving the item.
"""
return
OrderedDict
(
[
(
key
,
dataset
[
self
.
_map_index_to_dataset
(
key
,
index
)])
for
key
,
dataset
in
self
.
datasets
.
items
()
]
)
def
collater
(
self
,
samples
:
List
[
Dict
]):
"""
Generate a mini-batch for this dataset.
To convert this into a regular mini-batch we use the following
logic:
1. Select a dataset using the specified probability distribution.
2. Call the collater function of the selected dataset.
"""
if
len
(
samples
)
==
0
:
return
None
selected_key
=
self
.
sampling_func
(
list
(
self
.
datasets
.
keys
()))
selected_samples
=
[
sample
[
selected_key
]
for
sample
in
samples
]
return
self
.
datasets
[
selected_key
].
collater
(
selected_samples
)
def
num_tokens
(
self
,
index
:
int
):
"""
Return an example's length (number of tokens), used for batching. Here
we return the max across all examples at index across all underlying
datasets.
"""
return
max
(
dataset
.
num_tokens
(
self
.
_map_index_to_dataset
(
key
,
index
))
for
key
,
dataset
in
self
.
datasets
.
items
()
)
def
size
(
self
,
index
:
int
):
"""
Return an example's size as a float or tuple. Here we return the max
across all underlying datasets. This value is used when filtering a
dataset with max-positions.
"""
return
max
(
dataset
.
size
(
self
.
_map_index_to_dataset
(
key
,
index
))
for
key
,
dataset
in
self
.
datasets
.
items
()
)
@
property
def
supports_prefetch
(
self
):
return
all
(
getattr
(
dataset
,
"supports_prefetch"
,
False
)
for
dataset
in
self
.
datasets
.
values
()
)
def
prefetch
(
self
,
indices
):
for
key
,
dataset
in
self
.
datasets
.
items
():
dataset
.
prefetch
(
[
self
.
_map_index_to_dataset
(
key
,
index
)
for
index
in
indices
]
)
@
property
def
supports_fetch_outside_dataloader
(
self
):
return
all
(
self
.
datasets
[
key
].
supports_fetch_outside_dataloader
for
key
in
self
.
datasets
)
PyTorch/NLP/new-Transformer/fairseq/data/multilingual/__init__.py
0 → 100644
View file @
c0f05c10
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
PyTorch/NLP/new-Transformer/fairseq/data/multilingual/multilingual_data_manager.py
0 → 100644
View file @
c0f05c10
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import
itertools
import
json
import
logging
import
math
import
os
from
collections
import
OrderedDict
,
defaultdict
from
argparse
import
ArgumentError
from
fairseq
import
utils
from
fairseq.data
import
(
AppendTokenDataset
,
ConcatDataset
,
Dictionary
,
LanguagePairDataset
,
PrependTokenDataset
,
SampledMultiDataset
,
SampledMultiEpochDataset
,
StripTokenDataset
,
TransformEosLangPairDataset
,
TruncateDataset
,
data_utils
,
indexed_dataset
,
)
from
fairseq.data.multilingual.multilingual_utils
import
(
EncoderLangtok
,
LangTokSpec
,
LangTokStyle
,
augment_dictionary
,
get_lang_tok
,
)
from
fairseq.data.multilingual.sampled_multi_dataset
import
CollateFormat
from
fairseq.file_io
import
PathManager
from
fairseq.utils
import
FileContentsAction
,
csv_str_list
,
eval_str_dict
logger
=
logging
.
getLogger
(
__name__
)
SRC_DICT_NAME
=
"src"
TGT_DICT_NAME
=
"tgt"
def
_lang_id
(
dic
:
Dictionary
,
lang
:
str
):
"""Return language ID index."""
idx
=
dic
.
index
(
lang
)
assert
idx
!=
dic
.
unk_index
,
"cannot find language ID for lang {}"
.
format
(
lang
)
return
idx
def
load_sampling_weights
(
from_file
):
with
open
(
from_file
)
as
f
:
weights
=
json
.
load
(
f
)
return
weights
class
MultilingualDatasetManager
(
object
):
def
__init__
(
self
,
args
,
lang_pairs
,
langs
,
dicts
,
sampling_method
):
super
().
__init__
()
self
.
args
=
args
self
.
seed
=
args
.
seed
self
.
lang_pairs
=
lang_pairs
self
.
extra_lang_pairs
=
(
list
({
p
for
_
,
v
in
args
.
extra_lang_pairs
.
items
()
for
p
in
v
.
split
(
","
)})
if
args
.
extra_lang_pairs
else
[]
)
self
.
src_langs
=
{
p
.
split
(
"-"
)[
0
]
for
p
in
args
.
lang_pairs
+
self
.
extra_lang_pairs
}
self
.
tgt_langs
=
{
p
.
split
(
"-"
)[
1
]
for
p
in
args
.
lang_pairs
+
self
.
extra_lang_pairs
}
self
.
langs
=
langs
self
.
dicts
=
dicts
self
.
lang_dict
=
self
.
create_lang_dictionary
(
self
.
langs
)
self
.
sampling_method
=
sampling_method
self
.
sampling_scheduler
=
None
self
.
_has_sharded_data
=
False
self
.
_num_shards_dict
=
{}
self
.
_training_data_sizes
=
defaultdict
(
lambda
:
{})
@
classmethod
def
setup_data_manager
(
cls
,
args
,
lang_pairs
,
langs
,
dicts
,
sampling_method
):
return
MultilingualDatasetManager
(
args
,
lang_pairs
,
langs
,
dicts
,
sampling_method
)
@
staticmethod
def
add_args
(
parser
):
parser
.
add_argument
(
"data"
,
help
=
"colon separated path to data directories list,
\
will be iterated upon during epochs in round-robin manner"
,
action
=
FileContentsAction
,
)
parser
.
add_argument
(
"--langs"
,
default
=
None
,
type
=
csv_str_list
,
help
=
"a list of languages comma sperated languages which can appear in lang-pairs; "
"note that the ordering determines language token IDs"
,
)
parser
.
add_argument
(
"--lang-dict"
,
default
=
None
,
type
=
str
,
help
=
"an external file which contains a list of "
"languages which can appear in lang-pairs; "
"note that the ordering determines language token IDs; "
"--langs and --lang-dict are two exclusive options"
,
)
parser
.
add_argument
(
"--source-dict"
,
default
=
None
,
type
=
str
,
help
=
"path to source dictionary; if specified it will override per language dictionary loading"
,
)
parser
.
add_argument
(
"--target-dict"
,
default
=
None
,
type
=
str
,
help
=
"path to target dictionary; if specified it will override per language dictionary loading"
,
)
parser
.
add_argument
(
"--lang-tok-style"
,
default
=
LangTokStyle
.
multilingual
.
value
,
type
=
str
,
choices
=
[
LangTokStyle
.
multilingual
.
value
,
LangTokStyle
.
mbart
.
value
],
help
=
"language token styles"
,
)
parser
.
add_argument
(
"--load-alignments"
,
action
=
"store_true"
,
help
=
"load the binarized alignments"
,
)
parser
.
add_argument
(
"--left-pad-source"
,
default
=
"True"
,
type
=
str
,
metavar
=
"BOOL"
,
help
=
"pad the source on the left"
,
)
parser
.
add_argument
(
"--left-pad-target"
,
default
=
"False"
,
type
=
str
,
metavar
=
"BOOL"
,
help
=
"pad the target on the left"
,
)
try
:
parser
.
add_argument
(
"--max-source-positions"
,
default
=
1024
,
type
=
int
,
metavar
=
"N"
,
help
=
"max number of tokens in the source sequence"
,
)
parser
.
add_argument
(
"--max-target-positions"
,
default
=
1024
,
type
=
int
,
metavar
=
"N"
,
help
=
"max number of tokens in the target sequence"
,
)
except
ArgumentError
:
# this might have already been defined. Once we transition this to hydra it should be fine to add it here.
pass
parser
.
add_argument
(
"--upsample-primary"
,
default
=
1
,
type
=
int
,
help
=
"amount to upsample primary dataset"
,
)
parser
.
add_argument
(
"--truncate-source"
,
action
=
"store_true"
,
default
=
False
,
help
=
"truncate source to max-source-positions"
,
)
parser
.
add_argument
(
"--encoder-langtok"
,
default
=
None
,
type
=
str
,
choices
=
[
EncoderLangtok
.
src
.
value
,
EncoderLangtok
.
tgt
.
value
],
metavar
=
"SRCTGT"
,
help
=
"prepend to the beginning of source sentence the source or target "
"language token. (src/tgt)"
,
)
parser
.
add_argument
(
"--decoder-langtok"
,
action
=
"store_true"
,
help
=
"prepend to the beginning of target sentence the target language token"
,
)
parser
.
add_argument
(
"--lang-tok-replacing-bos-eos"
,
action
=
"store_true"
,
default
=
False
)
parser
.
add_argument
(
"--enable-lang-ids"
,
default
=
False
,
action
=
"store_true"
,
help
=
"whether to include language IDs in samples"
,
)
parser
.
add_argument
(
"--enable-reservsed-directions-shared-datasets"
,
default
=
False
,
action
=
"store_true"
,
help
=
"whether to allow datasets be used in reversed directions"
,
)
parser
.
add_argument
(
"--extra-data"
,
help
=
'a dictionary of data name to this path,
\
e.g. {"mined", path_to_mined_data, "denoised": path_to_denoised_data}'
,
type
=
lambda
uf
:
eval_str_dict
(
uf
,
type
=
str
),
default
=
None
,
)
parser
.
add_argument
(
"--extra-lang-pairs"
,
help
=
'a dictionary of data name to the language pairs they serve,
\
e.g. {"mined": comma-separated-lang-pairs, "denoised": comma-separated-lang-pairs}'
,
type
=
lambda
uf
:
eval_str_dict
(
uf
,
type
=
str
),
default
=
None
,
)
parser
.
add_argument
(
"--fixed-dictionary"
,
help
=
"Fixed dictionary to use with model path"
,
default
=
None
,
type
=
str
,
)
parser
.
add_argument
(
"--langtoks-specs"
,
help
=
'a list of comma separated data types that a set of language tokens to be specialized for,
\
e.g. "main,dae,mined". There will be a set of language tokens added to the vocab to
\
distinguish languages in different training data types. If not specified, default language
\
tokens per languages will be added'
,
default
=
LangTokSpec
.
main
.
value
,
type
=
csv_str_list
,
)
parser
.
add_argument
(
"--langtoks"
,
help
=
'a dictionary of how to add language tokens,
\
e.g. {"mined": (None, "tgt"), "mono_dae": ("src.dae", "tgt"), "main":
\
("src", "tgt")}, or {"mined": ("src.mined", "tgt")}'
,
default
=
None
,
type
=
lambda
uf
:
eval_str_dict
(
uf
,
type
=
str
),
)
parser
.
add_argument
(
"--sampling-weights-from-file"
,
help
=
'a file contain a python dictionary of how to sample data sets,
\
e.g. { "main:en_XX-es_XX": 0.2, "mined:en_XX-pt_XX": 0.5,
\
"mono_dae:es_XX-es_XX: 0.3, "main:en_xx-fr_XX": 0.8 }'
,
default
=
None
,
type
=
str
,
)
parser
.
add_argument
(
"--sampling-weights"
,
help
=
'a dictionary of how to sample data sets,
\
e.g. { "main:en_XX-es_XX": 0.2, "mined:en_XX-pt_XX": 0.5,
\
"mono_dae:es_XX-es_XX: 0.3, "main:en_xx-fr_XX": 0.8 }'
,
default
=
None
,
type
=
lambda
uf
:
eval_str_dict
(
uf
,
type
=
str
),
)
parser
.
add_argument
(
"--virtual-epoch-size"
,
default
=
None
,
type
=
int
,
help
=
"virtual epoch size to speed up data loading"
,
)
parser
.
add_argument
(
"--virtual-data-size"
,
default
=
None
,
type
=
int
,
help
=
"virtual data size of the whole joint dataset to speed"
"up data loading and have specific dynamic sampling strategy interval"
,
)
@
classmethod
def
load_langs
(
cls
,
args
,
**
kwargs
):
if
args
.
lang_dict
and
args
.
langs
:
raise
ValueError
(
"--langs and --lang-dict can not both be specified"
)
if
args
.
lang_dict
is
None
and
args
.
langs
is
None
:
logger
.
warning
(
"External language dictionary is not provided; "
"use lang-pairs to infer the set of supported languages. "
"The language ordering is not stable which might cause "
"misalignment in pretraining and finetuning."
)
# infer from lang_pairs as it is
langs
=
list
(
{
x
for
lang_pair
in
args
.
lang_pairs
for
x
in
lang_pair
.
split
(
"-"
)}
)
langs
=
sorted
(
langs
)
logger
.
info
(
f
"inferred language list:
{
langs
}
"
)
elif
args
.
lang_dict
:
with
open
(
PathManager
.
get_local_path
(
args
.
lang_dict
),
"r"
,
encoding
=
"utf-8"
)
as
f
:
langs
=
[
lang
.
strip
()
for
lang
in
f
.
readlines
()
if
lang
.
strip
()]
logger
.
info
(
f
"loaded language list from
{
args
.
lang_dict
}
as they are ordered in file"
)
elif
args
.
langs
:
langs
=
args
.
langs
logger
.
info
(
f
"parsed the language list as they are ordered in the option:
{
langs
}
"
)
return
langs
def
has_sharded_data
(
self
,
split
):
return
self
.
_has_sharded_data
and
split
==
getattr
(
self
.
args
,
"train_subset"
,
None
)
def
_shared_collater
(
self
):
return
not
(
self
.
args
.
extra_data
and
"mono_dae"
in
self
.
args
.
extra_data
)
and
(
not
self
.
args
.
lang_tok_replacing_bos_eos
)
def
estimate_global_pass_epoch
(
self
,
epoch
):
if
self
.
args
.
virtual_epoch_size
is
None
or
self
.
args
.
virtual_data_size
is
None
:
return
None
# one epoch more for remaining data in each shard
virtual_epochs_per_shard
=
math
.
ceil
(
self
.
args
.
virtual_data_size
/
self
.
args
.
virtual_epoch_size
)
# note that fairseq epoch / shard_epoch starts from 1
shard_epoch
=
(
epoch
-
1
)
//
virtual_epochs_per_shard
+
1
return
shard_epoch
@
classmethod
def
prepare
(
cls
,
load_dictionary
,
args
,
**
kargs
):
args
.
left_pad_source
=
utils
.
eval_bool
(
args
.
left_pad_source
)
args
.
left_pad_target
=
utils
.
eval_bool
(
args
.
left_pad_target
)
if
not
hasattr
(
args
,
"shuffle_instance"
):
args
.
shuffle_instance
=
False
if
args
.
langtoks
is
None
:
args
.
langtoks
=
{}
if
"main"
not
in
args
.
langtoks
:
src_langtok_spec
=
args
.
encoder_langtok
if
args
.
encoder_langtok
else
None
tgt_langtok_spec
=
"tgt"
if
args
.
decoder_langtok
else
None
args
.
langtoks
[
"main"
]
=
(
src_langtok_spec
,
tgt_langtok_spec
)
def
check_langs
(
langs
,
pairs
):
messages
=
[]
for
src
,
tgt
in
pairs
:
if
src
not
in
langs
or
tgt
not
in
langs
:
messages
.
append
(
f
"language pair
{
src
}
-
{
tgt
}
contains languages "
"that are not in the language dictionary"
)
if
len
(
messages
)
>
0
:
raise
ValueError
(
" "
.
join
(
messages
)
+
f
"; langs:
{
langs
}
"
)
if
args
.
lang_pairs
is
None
:
raise
ValueError
(
"--lang-pairs is required. List all the language pairs in the training objective."
)
if
isinstance
(
args
.
lang_pairs
,
str
):
args
.
lang_pairs
=
args
.
lang_pairs
.
split
(
","
)
if
args
.
source_lang
is
not
None
or
args
.
target_lang
is
not
None
:
training
=
False
else
:
training
=
True
language_list
=
cls
.
load_langs
(
args
,
**
kargs
)
check_langs
(
language_list
,
(
[
p
.
split
(
"-"
)
for
p
in
args
.
lang_pairs
]
if
training
else
[(
args
.
source_lang
,
args
.
target_lang
)]
),
)
def
load_dictionary_and_postproc
(
path
):
d
=
load_dictionary
(
path
)
augment_dictionary
(
dictionary
=
d
,
language_list
=
language_list
,
lang_tok_style
=
args
.
lang_tok_style
,
langtoks_specs
=
args
.
langtoks_specs
,
extra_data
=
args
.
extra_data
,
)
return
d
dicts
=
cls
.
load_all_dictionaries
(
args
,
language_list
,
load_dictionary_and_postproc
,
training
)
return
language_list
,
dicts
,
training
@
classmethod
def
load_all_dictionaries
(
cls
,
args
,
language_list
,
load_dictionary
,
training
):
dicts
=
OrderedDict
()
if
args
.
source_dict
is
not
None
:
dicts
[
SRC_DICT_NAME
]
=
load_dictionary
(
args
.
source_dict
)
if
args
.
target_dict
is
not
None
:
dicts
[
TGT_DICT_NAME
]
=
load_dictionary
(
args
.
target_dict
)
if
training
:
extra_lang_pairs
=
(
list
(
{
p
for
_
,
v
in
args
.
extra_lang_pairs
.
items
()
for
p
in
v
.
split
(
","
)}
)
if
args
.
extra_lang_pairs
else
[]
)
src_langs_to_load_dicts
=
sorted
(
{
p
.
split
(
"-"
)[
0
]
for
p
in
(
args
.
lang_pairs
+
extra_lang_pairs
)}
)
tgt_langs_to_load_dicts
=
sorted
(
{
p
.
split
(
"-"
)[
1
]
for
p
in
(
args
.
lang_pairs
+
extra_lang_pairs
)}
)
else
:
src_langs_to_load_dicts
=
[
args
.
source_lang
]
tgt_langs_to_load_dicts
=
[
args
.
target_lang
]
paths
=
utils
.
split_paths
(
args
.
data
)
assert
len
(
paths
)
>
0
def
load_dicts
(
langs_to_load_dicts
):
for
lang
in
langs_to_load_dicts
:
dicts
[
lang
]
=
load_dictionary
(
os
.
path
.
join
(
paths
[
0
],
"dict.{}.txt"
.
format
(
lang
))
)
if
len
(
dicts
)
>
0
:
dict0
=
next
(
iter
(
dicts
.
values
()))
assert
dicts
[
lang
].
pad
()
==
dict0
.
pad
()
assert
dicts
[
lang
].
eos
()
==
dict0
.
eos
()
assert
dicts
[
lang
].
unk
()
==
dict0
.
unk
()
logger
.
info
(
"[{}] dictionary: {} types"
.
format
(
lang
,
len
(
dicts
[
lang
])))
if
args
.
fixed_dictionary
is
not
None
:
fixed_dict
=
load_dictionary
(
args
.
fixed_dictionary
)
dicts
=
{
lang
:
fixed_dict
for
lang
in
src_langs_to_load_dicts
+
tgt_langs_to_load_dicts
}
else
:
if
args
.
source_dict
is
None
:
load_dicts
(
src_langs_to_load_dicts
)
if
args
.
target_dict
is
None
:
load_dicts
(
tgt_langs_to_load_dicts
)
return
dicts
def
get_source_dictionary
(
self
,
lang
):
if
self
.
args
.
source_dict
is
not
None
:
return
self
.
dicts
[
SRC_DICT_NAME
]
else
:
return
self
.
dicts
[
lang
]
def
get_target_dictionary
(
self
,
lang
):
if
self
.
args
.
target_dict
is
not
None
:
return
self
.
dicts
[
TGT_DICT_NAME
]
else
:
return
self
.
dicts
[
lang
]
@
classmethod
def
create_lang_dictionary
(
cls
,
langs
):
unk
=
"<unk>"
# hack to remove symbols other than unk as they are not needed by lang dict
lang_dict
=
Dictionary
(
pad
=
unk
,
eos
=
unk
,
unk
=
unk
,
bos
=
unk
)
for
lang
in
langs
:
lang_dict
.
add_symbol
(
lang
)
return
lang_dict
@
classmethod
def
get_langtok_index
(
cls
,
lang_tok
,
dic
):
idx
=
dic
.
index
(
lang_tok
)
assert
(
idx
!=
dic
.
unk_index
),
"cannot find language token {} in the dictionary"
.
format
(
lang_tok
)
return
idx
def
get_encoder_langtok
(
self
,
src_lang
,
tgt_lang
,
spec
=
None
):
if
spec
is
None
:
return
None
if
spec
and
spec
.
startswith
(
"src"
):
if
src_lang
is
None
:
return
None
langtok
=
get_lang_tok
(
lang
=
src_lang
,
lang_tok_style
=
self
.
args
.
lang_tok_style
,
spec
=
spec
)
else
:
if
tgt_lang
is
None
:
return
None
langtok
=
get_lang_tok
(
lang
=
tgt_lang
,
lang_tok_style
=
self
.
args
.
lang_tok_style
,
spec
=
spec
)
return
self
.
get_langtok_index
(
langtok
,
self
.
get_source_dictionary
(
src_lang
)
if
src_lang
else
self
.
get_target_dictionary
(
tgt_lang
),
)
def
get_decoder_langtok
(
self
,
tgt_lang
,
spec
=
None
):
if
spec
is
None
:
return
None
langtok
=
get_lang_tok
(
lang
=
tgt_lang
,
lang_tok_style
=
self
.
args
.
lang_tok_style
,
spec
=
spec
)
return
self
.
get_langtok_index
(
langtok
,
self
.
get_target_dictionary
(
tgt_lang
))
@
classmethod
def
load_data
(
cls
,
path
,
vdict
,
impl
):
dataset
=
data_utils
.
load_indexed_dataset
(
path
,
vdict
,
impl
)
return
dataset
@
classmethod
def
split_exists
(
cls
,
split
,
src
,
tgt
,
lang
,
data_path
,
dataset_impl
):
filename
=
os
.
path
.
join
(
data_path
,
"{}.{}-{}.{}"
.
format
(
split
,
src
,
tgt
,
lang
))
return
indexed_dataset
.
dataset_exists
(
filename
,
impl
=
dataset_impl
)
def
load_lang_dataset
(
self
,
data_path
,
split
,
src
,
src_dict
,
tgt
,
tgt_dict
,
combine
,
dataset_impl
,
upsample_primary
,
max_source_positions
,
prepend_bos
=
False
,
load_alignments
=
False
,
truncate_source
=
False
,
):
src_datasets
=
[]
tgt_datasets
=
[]
for
k
in
itertools
.
count
():
split_k
=
split
+
(
str
(
k
)
if
k
>
0
else
""
)
# infer langcode
if
self
.
split_exists
(
split_k
,
src
,
tgt
,
src
,
data_path
,
dataset_impl
):
prefix
=
os
.
path
.
join
(
data_path
,
"{}.{}-{}."
.
format
(
split_k
,
src
,
tgt
))
elif
self
.
split_exists
(
split_k
,
tgt
,
src
,
src
,
data_path
,
dataset_impl
):
prefix
=
os
.
path
.
join
(
data_path
,
"{}.{}-{}."
.
format
(
split_k
,
tgt
,
src
))
else
:
if
k
>
0
:
break
else
:
logger
.
error
(
f
"Dataset not found:
{
data_path
}
,
{
split_k
}
,
{
src
}
,
{
tgt
}
"
)
raise
FileNotFoundError
(
"Dataset not found: {} ({})"
.
format
(
split
,
data_path
)
)
src_dataset
=
self
.
load_data
(
prefix
+
src
,
src_dict
,
dataset_impl
)
if
truncate_source
:
src_dataset
=
AppendTokenDataset
(
TruncateDataset
(
StripTokenDataset
(
src_dataset
,
src_dict
.
eos
()),
max_source_positions
-
1
,
),
src_dict
.
eos
(),
)
src_datasets
.
append
(
src_dataset
)
tgt_datasets
.
append
(
self
.
load_data
(
prefix
+
tgt
,
tgt_dict
,
dataset_impl
))
logger
.
info
(
"{} {} {}-{} {} examples"
.
format
(
data_path
,
split_k
,
src
,
tgt
,
len
(
src_datasets
[
-
1
])
)
)
if
not
combine
:
break
assert
len
(
src_datasets
)
==
len
(
tgt_datasets
)
if
len
(
src_datasets
)
==
1
:
src_dataset
,
tgt_dataset
=
src_datasets
[
0
],
tgt_datasets
[
0
]
else
:
sample_ratios
=
[
1
]
*
len
(
src_datasets
)
sample_ratios
[
0
]
=
upsample_primary
src_dataset
=
ConcatDataset
(
src_datasets
,
sample_ratios
)
tgt_dataset
=
ConcatDataset
(
tgt_datasets
,
sample_ratios
)
if
prepend_bos
:
assert
hasattr
(
src_dict
,
"bos_index"
)
and
hasattr
(
tgt_dict
,
"bos_index"
)
src_dataset
=
PrependTokenDataset
(
src_dataset
,
src_dict
.
bos
())
tgt_dataset
=
PrependTokenDataset
(
tgt_dataset
,
tgt_dict
.
bos
())
align_dataset
=
None
if
load_alignments
:
align_path
=
os
.
path
.
join
(
data_path
,
"{}.align.{}-{}"
.
format
(
split
,
src
,
tgt
)
)
if
indexed_dataset
.
dataset_exists
(
align_path
,
impl
=
dataset_impl
):
align_dataset
=
data_utils
.
load_indexed_dataset
(
align_path
,
None
,
dataset_impl
)
return
src_dataset
,
tgt_dataset
,
align_dataset
def
load_langpair_dataset
(
self
,
data_path
,
split
,
src
,
src_dict
,
tgt
,
tgt_dict
,
combine
,
dataset_impl
,
upsample_primary
,
left_pad_source
,
left_pad_target
,
max_source_positions
,
max_target_positions
,
prepend_bos
=
False
,
load_alignments
=
False
,
truncate_source
=
False
,
src_dataset_transform_func
=
lambda
dataset
:
dataset
,
tgt_dataset_transform_func
=
lambda
dataset
:
dataset
,
src_lang_id
=
None
,
tgt_lang_id
=
None
,
langpairs_sharing_datasets
=
None
,
):
norm_direction
=
"-"
.
join
(
sorted
([
src
,
tgt
]))
if
langpairs_sharing_datasets
is
not
None
:
src_dataset
=
langpairs_sharing_datasets
.
get
(
(
data_path
,
split
,
norm_direction
,
src
),
"NotInCache"
)
tgt_dataset
=
langpairs_sharing_datasets
.
get
(
(
data_path
,
split
,
norm_direction
,
tgt
),
"NotInCache"
)
align_dataset
=
langpairs_sharing_datasets
.
get
(
(
data_path
,
split
,
norm_direction
,
src
,
tgt
),
"NotInCache"
)
# a hack: any one is not in cache, we need to reload them
if
(
langpairs_sharing_datasets
is
None
or
src_dataset
==
"NotInCache"
or
tgt_dataset
==
"NotInCache"
or
align_dataset
==
"NotInCache"
or
split
!=
getattr
(
self
.
args
,
"train_subset"
,
None
)
):
# source and target datasets can be reused in reversed directions to save memory
# reversed directions of valid and test data will not share source and target datasets
src_dataset
,
tgt_dataset
,
align_dataset
=
self
.
load_lang_dataset
(
data_path
,
split
,
src
,
src_dict
,
tgt
,
tgt_dict
,
combine
,
dataset_impl
,
upsample_primary
,
max_source_positions
=
max_source_positions
,
prepend_bos
=
prepend_bos
,
load_alignments
=
load_alignments
,
truncate_source
=
truncate_source
,
)
src_dataset
=
src_dataset_transform_func
(
src_dataset
)
tgt_dataset
=
tgt_dataset_transform_func
(
tgt_dataset
)
if
langpairs_sharing_datasets
is
not
None
:
langpairs_sharing_datasets
[
(
data_path
,
split
,
norm_direction
,
src
)
]
=
src_dataset
langpairs_sharing_datasets
[
(
data_path
,
split
,
norm_direction
,
tgt
)
]
=
tgt_dataset
langpairs_sharing_datasets
[
(
data_path
,
split
,
norm_direction
,
src
,
tgt
)
]
=
align_dataset
if
align_dataset
is
None
:
# no align data so flag the reverse direction as well in sharing
langpairs_sharing_datasets
[
(
data_path
,
split
,
norm_direction
,
tgt
,
src
)
]
=
align_dataset
else
:
logger
.
info
(
f
"Reusing source and target datasets of [
{
split
}
]
{
tgt
}
-
{
src
}
for reversed direction: "
f
"[
{
split
}
]
{
src
}
-
{
tgt
}
: src length=
{
len
(
src_dataset
)
}
; tgt length=
{
len
(
tgt_dataset
)
}
"
)
return
LanguagePairDataset
(
src_dataset
,
src_dataset
.
sizes
,
src_dict
,
tgt_dataset
,
tgt_dataset
.
sizes
if
tgt_dataset
is
not
None
else
None
,
tgt_dict
,
left_pad_source
=
left_pad_source
,
left_pad_target
=
left_pad_target
,
align_dataset
=
align_dataset
,
src_lang_id
=
src_lang_id
,
tgt_lang_id
=
tgt_lang_id
,
)
def
src_dataset_tranform_func
(
self
,
src_lang
,
tgt_lang
,
dataset
,
spec
=
None
):
if
self
.
args
.
lang_tok_replacing_bos_eos
:
# it is handled by self.alter_dataset_langtok
# TODO: Unifiy with alter_dataset_langtok
return
dataset
if
spec
is
None
:
return
dataset
tok
=
self
.
get_encoder_langtok
(
src_lang
,
tgt_lang
,
spec
)
if
tok
:
return
PrependTokenDataset
(
dataset
,
tok
)
return
dataset
def
tgt_dataset_tranform_func
(
self
,
source_lang
,
target_lang
,
dataset
,
spec
=
None
):
if
dataset
is
None
:
# note that target dataset can be None during inference time
return
None
if
self
.
args
.
lang_tok_replacing_bos_eos
:
# TODO: Unifiy with alter_dataset_langtok
# It is handled by self.alter_dataset_langtok.
# The complication in self.alter_dataset_langtok
# makes a unified framework difficult.
return
dataset
# if not self.args.decoder_langtok:
if
not
spec
:
return
dataset
tok
=
self
.
get_decoder_langtok
(
target_lang
,
spec
)
if
tok
:
return
PrependTokenDataset
(
dataset
,
tok
)
return
dataset
def
alter_dataset_langtok
(
self
,
lang_pair_dataset
,
src_eos
=
None
,
src_lang
=
None
,
tgt_eos
=
None
,
tgt_lang
=
None
,
src_langtok_spec
=
None
,
tgt_langtok_spec
=
None
,
):
if
src_langtok_spec
is
None
and
tgt_langtok_spec
is
None
:
return
lang_pair_dataset
new_src_eos
=
None
if
(
src_langtok_spec
is
not
None
and
src_eos
is
not
None
and
(
src_lang
is
not
None
or
tgt_lang
is
not
None
)
):
new_src_eos
=
self
.
get_encoder_langtok
(
src_lang
,
tgt_lang
,
src_langtok_spec
)
else
:
src_eos
=
None
new_tgt_bos
=
None
if
tgt_langtok_spec
and
tgt_eos
is
not
None
and
tgt_lang
is
not
None
:
new_tgt_bos
=
self
.
get_decoder_langtok
(
tgt_lang
,
tgt_langtok_spec
)
else
:
tgt_eos
=
None
return
TransformEosLangPairDataset
(
lang_pair_dataset
,
src_eos
=
src_eos
,
new_src_eos
=
new_src_eos
,
tgt_bos
=
tgt_eos
,
new_tgt_bos
=
new_tgt_bos
,
)
def
load_a_dataset
(
self
,
split
,
data_path
,
src
,
src_dict
,
tgt
,
tgt_dict
,
combine
,
prepend_bos
=
False
,
langpairs_sharing_datasets
=
None
,
data_category
=
None
,
**
extra_kwargs
,
):
dataset_impl
=
self
.
args
.
dataset_impl
upsample_primary
=
self
.
args
.
upsample_primary
left_pad_source
=
self
.
args
.
left_pad_source
left_pad_target
=
self
.
args
.
left_pad_target
max_source_positions
=
self
.
args
.
max_source_positions
max_target_positions
=
self
.
args
.
max_target_positions
load_alignments
=
self
.
args
.
load_alignments
truncate_source
=
self
.
args
.
truncate_source
src_dataset_transform_func
=
self
.
src_dataset_tranform_func
tgt_dataset_transform_func
=
self
.
tgt_dataset_tranform_func
enable_lang_ids
=
self
.
args
.
enable_lang_ids
lang_dictionary
=
self
.
lang_dict
src_langtok_spec
,
tgt_langtok_spec
=
extra_kwargs
[
"langtok_spec"
]
src_langtok
=
self
.
get_encoder_langtok
(
src
,
tgt
,
src_langtok_spec
)
tgt_langtok
=
self
.
get_decoder_langtok
(
tgt
,
tgt_langtok_spec
)
logger
.
info
(
f
"
{
data_category
}
:
{
src
}
-
{
tgt
}
src_langtok:
{
src_langtok
}
; tgt_langtok:
{
tgt_langtok
}
"
)
langpair_ds
=
self
.
load_langpair_dataset
(
data_path
,
split
,
src
,
src_dict
,
tgt
,
tgt_dict
,
combine
,
dataset_impl
,
upsample_primary
,
left_pad_source
,
left_pad_target
,
max_source_positions
,
max_target_positions
,
prepend_bos
,
load_alignments
,
truncate_source
,
src_dataset_transform_func
=
lambda
dataset
:
src_dataset_transform_func
(
src
,
tgt
,
dataset
,
src_langtok_spec
),
tgt_dataset_transform_func
=
lambda
dataset
:
tgt_dataset_transform_func
(
src
,
tgt
,
dataset
,
tgt_langtok_spec
),
src_lang_id
=
_lang_id
(
lang_dictionary
,
src
)
if
enable_lang_ids
and
lang_dictionary
is
not
None
else
None
,
tgt_lang_id
=
_lang_id
(
lang_dictionary
,
tgt
)
if
enable_lang_ids
and
lang_dictionary
is
not
None
else
None
,
langpairs_sharing_datasets
=
langpairs_sharing_datasets
,
)
# TODO: handle modified lang toks for mined data and dae data
if
self
.
args
.
lang_tok_replacing_bos_eos
:
ds
=
self
.
alter_dataset_langtok
(
langpair_ds
,
src_eos
=
self
.
get_source_dictionary
(
src
).
eos
()
if
src
else
self
.
get_target_dictionary
(
tgt
).
eos
(),
src_lang
=
src
,
tgt_eos
=
self
.
get_target_dictionary
(
tgt
).
eos
(),
tgt_lang
=
tgt
,
src_langtok_spec
=
src_langtok_spec
,
tgt_langtok_spec
=
tgt_langtok_spec
,
)
else
:
ds
=
langpair_ds
return
ds
def
load_split_langpair_datasets
(
self
,
split
,
data_param_list
):
datasets
=
[]
langpairs_sharing_datasets
=
(
{}
if
self
.
args
.
enable_reservsed_directions_shared_datasets
else
None
)
for
param
in
data_param_list
:
ds
=
self
.
load_a_dataset
(
split
=
split
,
langpairs_sharing_datasets
=
langpairs_sharing_datasets
,
**
param
,
)
datasets
.
append
(
ds
)
return
datasets
def
get_data_paths_and_lang_pairs
(
self
,
split
):
datapaths
=
{
"main"
:
self
.
args
.
data
}
lang_pairs
=
{
"main"
:
self
.
lang_pairs
}
if
split
==
getattr
(
self
.
args
,
"train_subset"
,
None
):
# only training data can have extra data and extra language pairs
if
self
.
args
.
extra_data
:
extra_datapaths
=
self
.
args
.
extra_data
datapaths
.
update
(
extra_datapaths
)
if
self
.
args
.
extra_lang_pairs
:
extra_lang_pairs
=
{
k
:
v
.
split
(
","
)
for
k
,
v
in
self
.
args
.
extra_lang_pairs
.
items
()
}
lang_pairs
.
update
(
extra_lang_pairs
)
return
datapaths
,
lang_pairs
@
classmethod
def
get_dataset_key
(
cls
,
data_category
,
src
,
tgt
):
return
f
"
{
data_category
}
:
{
src
}
-
{
tgt
}
"
@
classmethod
def
_get_shard_num_dict
(
cls
,
split
,
paths
):
shards
=
defaultdict
(
int
)
for
path
in
paths
:
files
=
PathManager
.
ls
(
path
)
directions
=
set
()
for
f
in
files
:
if
f
.
startswith
(
split
)
and
f
.
endswith
(
".idx"
):
# idx files of the form "{split}.{src}-{tgt}.{lang}.idx"
direction
=
f
.
split
(
"."
)[
-
3
]
directions
.
add
(
direction
)
for
direction
in
directions
:
shards
[
direction
]
+=
1
return
shards
def
get_split_num_data_shards
(
self
,
split
):
if
split
in
self
.
_num_shards_dict
:
return
self
.
_num_shards_dict
[
split
]
num_shards_dict
=
{}
data_paths
,
lang_pairs
=
self
.
get_data_paths_and_lang_pairs
(
split
)
for
data_category
,
paths
in
data_paths
.
items
():
if
data_category
not
in
lang_pairs
:
continue
paths
=
utils
.
split_paths
(
paths
)
shards_dict
=
self
.
_get_shard_num_dict
(
split
,
paths
)
lang_dirs
=
[
lang_pair
.
split
(
"-"
)
for
lang_pair
in
lang_pairs
[
data_category
]
]
lang_dirs
=
[
x
if
len
(
x
)
>
1
else
(
x
[
0
],
x
[
0
])
for
x
in
lang_dirs
]
for
src
,
tgt
in
lang_dirs
:
key
=
self
.
get_dataset_key
(
data_category
,
src
,
tgt
)
if
"mono_"
in
data_category
:
# monolingual data requires tgt only
assert
src
is
None
or
src
==
tgt
,
(
f
"error: src=
{
src
}
, "
f
"tgt=
{
tgt
}
for data_category=
{
data_category
}
"
)
num_shards_dict
[
key
]
=
shards_dict
[
tgt
]
else
:
if
f
"
{
src
}
-
{
tgt
}
"
in
shards_dict
:
num_shards_dict
[
key
]
=
shards_dict
[
f
"
{
src
}
-
{
tgt
}
"
]
elif
f
"
{
tgt
}
-
{
src
}
"
in
shards_dict
:
# follow the fairseq tradition to use reversed direction data if it is not available
num_shards_dict
[
key
]
=
shards_dict
[
f
"
{
tgt
}
-
{
src
}
"
]
self
.
_num_shards_dict
[
split
]
=
num_shards_dict
logger
.
info
(
f
"[
{
split
}
] num of shards:
{
num_shards_dict
}
"
)
return
num_shards_dict
@
classmethod
def
get_shard_id
(
cls
,
num_shards
,
epoch
,
shard_epoch
=
None
):
shard
=
epoch
if
shard_epoch
is
None
else
shard_epoch
shard
=
(
shard
-
1
)
%
num_shards
return
shard
def
get_split_data_path
(
self
,
paths
,
epoch
,
shard_epoch
,
num_shards
):
path
=
paths
[
self
.
get_shard_id
(
num_shards
,
epoch
,
shard_epoch
)]
return
path
def
get_split_data_param_list
(
self
,
split
,
epoch
,
shard_epoch
=
None
):
# TODO: to extend with extra datasets and keys and loop over different shard data paths
param_list
=
[]
data_paths
,
lang_pairs
=
self
.
get_data_paths_and_lang_pairs
(
split
)
logger
.
info
(
f
"langtoks settings:
{
self
.
args
.
langtoks
}
"
)
split_num_shards_dict
=
self
.
get_split_num_data_shards
(
split
)
for
data_category
,
paths
in
data_paths
.
items
():
if
data_category
not
in
lang_pairs
:
continue
paths
=
utils
.
split_paths
(
paths
)
assert
len
(
paths
)
>
0
if
len
(
paths
)
>
1
:
self
.
_has_sharded_data
=
True
if
split
!=
getattr
(
self
.
args
,
"train_subset"
,
None
):
# if not training data set, use the first shard for valid and test
paths
=
paths
[:
1
]
if
data_category
in
self
.
args
.
langtoks
:
lang_tok_spec
=
self
.
args
.
langtoks
[
data_category
]
else
:
# default to None
lang_tok_spec
=
(
None
,
None
)
# infer langcode
lang_dirs
=
[
lang_pair
.
split
(
"-"
)
for
lang_pair
in
lang_pairs
[
data_category
]
]
lang_dirs
=
[
x
if
len
(
x
)
>
1
else
(
x
[
0
],
x
[
0
])
for
x
in
lang_dirs
]
for
src
,
tgt
in
lang_dirs
:
assert
src
is
not
None
or
data_category
==
"mono_dae"
,
(
f
"error: src=
{
src
}
, "
f
"tgt=
{
tgt
}
for data_category=
{
data_category
}
"
)
# logger.info(f"preparing param for {data_category}: {src} - {tgt}")
key
=
self
.
get_dataset_key
(
data_category
,
src
,
tgt
)
data_path
=
self
.
get_split_data_path
(
paths
,
epoch
,
shard_epoch
,
split_num_shards_dict
[
key
]
)
param_list
.
append
(
{
"key"
:
key
,
"data_path"
:
data_path
,
"split"
:
split
,
"src"
:
src
,
"src_dict"
:
self
.
get_source_dictionary
(
src
)
if
src
and
data_category
!=
"mono_dae"
else
None
,
"tgt"
:
tgt
,
"tgt_dict"
:
self
.
get_target_dictionary
(
tgt
),
"data_category"
:
data_category
,
"langtok_spec"
:
lang_tok_spec
,
}
)
return
param_list
def
get_train_dataset_sizes
(
self
,
data_param_list
,
datasets
,
epoch
,
shard_epoch
=
None
):
num_shards
=
[
self
.
get_split_num_data_shards
(
param
[
"split"
])[
param
[
"key"
]]
for
param
in
data_param_list
]
data_sizes
=
[]
for
(
key
,
d
),
num_shard
in
zip
(
datasets
,
num_shards
):
my_data_sizes
=
self
.
_training_data_sizes
[
key
]
shard_ind
=
self
.
get_shard_id
(
num_shard
,
epoch
,
shard_epoch
)
if
shard_ind
not
in
my_data_sizes
:
my_data_sizes
[
shard_ind
]
=
len
(
d
)
known_size
=
max
(
my_data_sizes
.
values
())
data_sizes
.
append
(
# If we don't know the data size of the shard yet,
# use the the max known data size to approximate.
# Note that we preprocess shards by a designated shard size
# and put any remaining data at the end into the last shard so
# the max shard size approximation is almost correct before loading
# the last shard; after loading the last shard, it will have the
# exact data sizes of the whole data size.
(
key
,
sum
(
my_data_sizes
.
get
(
i
,
known_size
)
for
i
in
range
(
num_shard
)))
)
logger
.
info
(
f
"estimated total data sizes of all shards used in sampling ratios:
{
data_sizes
}
. "
"Note that if the data a shard has not been loaded yet, use the max known data size to approximate"
)
return
[
s
for
_
,
s
in
data_sizes
]
def
get_train_sampling_ratios
(
self
,
data_param_list
,
datasets
,
epoch
=
1
,
shard_epoch
=
None
):
data_sizes
=
self
.
get_train_dataset_sizes
(
data_param_list
,
datasets
,
epoch
,
shard_epoch
)
sampling_func
=
self
.
sampling_method
.
sampling_method_selector
()
sample_ratios
=
sampling_func
(
data_sizes
)
if
sampling_func
is
not
None
else
None
return
sample_ratios
def
get_sampling_ratios
(
self
,
data_param_list
,
datasets
,
epoch
,
shard_epoch
=
None
):
if
self
.
args
.
sampling_weights_from_file
:
weights
=
load_sampling_weights
(
self
.
args
.
sampling_weights_from_file
)
sample_ratios
=
[
weights
[
k
]
for
k
,
_
in
datasets
]
logger
.
info
(
"| ignoring --sampling-weights when loadding sampling weights "
f
"from file
{
self
.
args
.
sampling_weights_from_file
}
"
)
elif
self
.
args
.
sampling_weights
:
sample_ratios
=
[
self
.
args
.
sampling_weights
[
k
]
for
k
,
_
in
datasets
]
else
:
sample_ratios
=
self
.
get_train_sampling_ratios
(
data_param_list
,
datasets
,
epoch
,
shard_epoch
)
if
sample_ratios
is
not
None
:
logger
.
info
(
"| Upsample ratios: {}"
.
format
(
list
(
zip
(
map
(
lambda
x
:
x
[
"key"
],
data_param_list
),
sample_ratios
))
)
)
assert
len
(
sample_ratios
)
==
len
(
datasets
)
return
sample_ratios
def
load_split_datasets
(
self
,
split
,
training
,
epoch
=
1
,
combine
=
False
,
shard_epoch
=
None
,
**
kwargs
):
data_param_list
=
self
.
get_split_data_param_list
(
split
,
epoch
,
shard_epoch
=
shard_epoch
)
langpairs_sharing_datasets
=
(
{}
if
self
.
args
.
enable_reservsed_directions_shared_datasets
else
None
)
datasets
=
[
(
param
[
"key"
],
self
.
load_a_dataset
(
combine
=
combine
,
langpairs_sharing_datasets
=
langpairs_sharing_datasets
,
**
param
,
),
)
for
param
in
data_param_list
]
return
datasets
,
data_param_list
def
load_into_concat_dataset
(
self
,
split
,
datasets
,
data_param_list
):
if
self
.
args
.
lang_tok_replacing_bos_eos
:
# TODO: to investigate why TransformEosLangPairDataset doesn't work with ConcatDataset
return
SampledMultiDataset
(
OrderedDict
(
datasets
),
sampling_ratios
=
None
,
eval_key
=
None
,
collate_format
=
CollateFormat
.
single
,
virtual_size
=
None
,
split
=
split
,
)
return
ConcatDataset
([
d
for
_
,
d
in
datasets
])
def
load_sampled_multi_epoch_dataset
(
self
,
split
,
training
,
epoch
=
0
,
combine
=
False
,
shard_epoch
=
None
,
**
kwargs
):
datasets
,
data_param_list
=
self
.
load_split_datasets
(
split
,
training
,
epoch
,
combine
,
shard_epoch
=
shard_epoch
,
**
kwargs
)
if
training
and
split
==
getattr
(
self
.
args
,
"train_subset"
,
None
):
sample_ratios
=
self
.
get_sampling_ratios
(
data_param_list
,
datasets
,
epoch
)
return
SampledMultiEpochDataset
(
OrderedDict
(
datasets
),
epoch
=
epoch
,
shard_epoch
=
shard_epoch
,
# valid and test datasets will be degenerate to concating datasets:
sampling_ratios
=
sample_ratios
,
eval_key
=
None
,
collate_format
=
CollateFormat
.
single
,
virtual_size
=
self
.
args
.
virtual_data_size
,
split
=
split
,
virtual_epoch_size
=
self
.
args
.
virtual_epoch_size
,
# if not using lang_tok altering, simplified to use the same collater
shared_collater
=
self
.
_shared_collater
(),
)
else
:
return
self
.
load_into_concat_dataset
(
split
,
datasets
,
data_param_list
)
def
load_sampled_multi_dataset
(
self
,
split
,
training
,
epoch
=
0
,
combine
=
False
,
shard_epoch
=
None
,
**
kwargs
):
datasets
,
data_param_list
=
self
.
load_split_datasets
(
split
,
training
,
epoch
,
combine
,
shard_epoch
=
shard_epoch
,
**
kwargs
)
if
training
and
split
==
getattr
(
self
.
args
,
"train_subset"
,
None
):
sample_ratios
=
self
.
get_sampling_ratios
(
data_param_list
,
datasets
,
epoch
)
return
SampledMultiDataset
(
OrderedDict
(
datasets
),
epoch
=
epoch
,
# valid and test datasets will be degerate to concating datasets:
sampling_ratios
=
sample_ratios
,
eval_key
=
None
,
collate_format
=
CollateFormat
.
single
,
virtual_size
=
self
.
args
.
virtual_data_size
,
split
=
split
,
# if not using lang_tok altering, simplified to use the same collater
shared_collater
=
self
.
_shared_collater
(),
)
else
:
return
self
.
load_into_concat_dataset
(
split
,
datasets
,
data_param_list
)
def
load_dataset
(
self
,
split
,
training
,
epoch
=
0
,
combine
=
False
,
shard_epoch
=
None
,
**
kwargs
):
if
self
.
args
.
virtual_epoch_size
is
None
:
return
self
.
load_sampled_multi_dataset
(
split
,
training
,
epoch
,
combine
,
shard_epoch
,
**
kwargs
)
else
:
return
self
.
load_sampled_multi_epoch_dataset
(
split
,
training
,
epoch
,
combine
,
shard_epoch
,
**
kwargs
)
PyTorch/NLP/new-Transformer/fairseq/data/multilingual/multilingual_utils.py
0 → 100644
View file @
c0f05c10
from
enum
import
Enum
from
typing
import
Dict
,
List
,
Optional
,
Sequence
import
torch
from
fairseq.data
import
Dictionary
class
EncoderLangtok
(
Enum
):
"""
Prepend to the beginning of source sentence either the
source or target language token. (src/tgt).
"""
src
=
"src"
tgt
=
"tgt"
class
LangTokSpec
(
Enum
):
main
=
"main"
mono_dae
=
"mono_dae"
class
LangTokStyle
(
Enum
):
multilingual
=
"multilingual"
mbart
=
"mbart"
@
torch
.
jit
.
export
def
get_lang_tok
(
lang
:
str
,
lang_tok_style
:
str
,
spec
:
str
=
LangTokSpec
.
main
.
value
)
->
str
:
# TOKEN_STYLES can't be defined outside this fn since it needs to be
# TorchScriptable.
TOKEN_STYLES
:
Dict
[
str
,
str
]
=
{
LangTokStyle
.
mbart
.
value
:
"[{}]"
,
LangTokStyle
.
multilingual
.
value
:
"__{}__"
,
}
if
spec
.
endswith
(
"dae"
):
lang
=
f
"
{
lang
}
_dae"
elif
spec
.
endswith
(
"mined"
):
lang
=
f
"
{
lang
}
_mined"
style
=
TOKEN_STYLES
[
lang_tok_style
]
return
style
.
format
(
lang
)
def
augment_dictionary
(
dictionary
:
Dictionary
,
language_list
:
List
[
str
],
lang_tok_style
:
str
,
langtoks_specs
:
Sequence
[
str
]
=
(
LangTokSpec
.
main
.
value
,),
extra_data
:
Optional
[
Dict
[
str
,
str
]]
=
None
,
)
->
None
:
for
spec
in
langtoks_specs
:
for
language
in
language_list
:
dictionary
.
add_symbol
(
get_lang_tok
(
lang
=
language
,
lang_tok_style
=
lang_tok_style
,
spec
=
spec
)
)
if
lang_tok_style
==
LangTokStyle
.
mbart
.
value
or
(
extra_data
is
not
None
and
LangTokSpec
.
mono_dae
.
value
in
extra_data
):
dictionary
.
add_symbol
(
"<mask>"
)
PyTorch/NLP/new-Transformer/fairseq/data/multilingual/sampled_multi_dataset.py
0 → 100644
View file @
c0f05c10
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import
datetime
import
hashlib
import
logging
import
time
from
bisect
import
bisect_right
from
collections
import
OrderedDict
,
defaultdict
from
enum
import
Enum
from
typing
import
List
import
numpy
as
np
import
torch
from
fairseq.data
import
FairseqDataset
,
data_utils
from
fairseq.distributed
import
utils
as
distributed_utils
def
get_time_gap
(
s
,
e
):
return
(
datetime
.
datetime
.
fromtimestamp
(
e
)
-
datetime
.
datetime
.
fromtimestamp
(
s
)
).
__str__
()
logger
=
logging
.
getLogger
(
__name__
)
def
default_virtual_size_func
(
datasets
,
ratios
,
max_scale_up
=
1.5
):
sizes
=
[
len
(
d
)
for
d
in
datasets
]
if
ratios
is
None
:
return
sum
(
sizes
)
largest_idx
=
np
.
argmax
(
sizes
)
largest_r
=
ratios
[
largest_idx
]
largest_s
=
sizes
[
largest_idx
]
# set virtual sizes relative to the largest dataset
virtual_sizes
=
[(
r
/
largest_r
)
*
largest_s
for
r
in
ratios
]
vsize
=
sum
(
virtual_sizes
)
max_size
=
sum
(
sizes
)
*
max_scale_up
return
int
(
vsize
if
vsize
<
max_size
else
max_size
)
class
CollateFormat
(
Enum
):
single
=
1
ordered_dict
=
2
class
SampledMultiDataset
(
FairseqDataset
):
"""Samples from multiple sub-datasets according to given sampling ratios.
Args:
datasets (
List[~torch.utils.data.Dataset]
or OrderedDict[str, ~torch.utils.data.Dataset]
): datasets
sampling_ratios (List[float]): list of probability of each dataset to be sampled
(default: None, which corresponds to concatenating all dataset together).
seed (int): RNG seed to use (default: 2).
epoch (int): starting epoch number (default: 1).
eval_key (str, optional): a key used at evaluation time that causes
this instance to pass-through batches from *datasets[eval_key]*.
collate_format (CollateFormat): collater output format, either CollateFormat.ordered_dict or
CollateFormat.single (default: CollateFormat.single) where CollateFormat.single configures
the collater to output batches of data mixed from all sub-datasets,
and CollateFormat.ordered_dict configures the collater to output a dictionary of batches indexed by keys
of sub-datasets.
Note that not all sub-datasets will present in a single batch in both formats.
virtual_size (int, or callable): the expected virtual size of the dataset (default: default_virtual_size_func).
split (str): the split of the data, e.g. 'train', 'valid' or 'test'.
shared_collater (bool): whether or not to all sub-datasets have the same collater.
shuffle (bool): whether or not to shuffle data (default: True).
"""
def
__init__
(
self
,
datasets
,
sampling_ratios
=
None
,
seed
=
2
,
epoch
=
1
,
eval_key
=
None
,
collate_format
=
CollateFormat
.
single
,
virtual_size
=
default_virtual_size_func
,
split
=
""
,
shared_collater
=
False
,
shuffle
=
True
,
):
super
().
__init__
()
self
.
shared_collater
=
shared_collater
self
.
shuffle
=
shuffle
if
isinstance
(
datasets
,
OrderedDict
):
self
.
keys
=
list
(
datasets
.
keys
())
datasets
=
list
(
datasets
.
values
())
elif
isinstance
(
datasets
,
List
):
self
.
keys
=
list
(
range
(
len
(
datasets
)))
else
:
raise
AssertionError
()
self
.
datasets
=
datasets
self
.
split
=
split
self
.
eval_key
=
eval_key
if
self
.
eval_key
is
not
None
:
self
.
collate_format
=
CollateFormat
.
single
else
:
self
.
collate_format
=
collate_format
self
.
seed
=
seed
self
.
_cur_epoch
=
None
self
.
cumulated_sizes
=
None
# self.datasets[k][self._cur_indices[i]] is the data item i in this sampled dataset
# namely, data item i is sampled from the kth sub-dataset self.datasets[k]
# where self.cumulated_sizes[k-1] <= i < self.cumulated_sizes[k]
self
.
_cur_indices
=
None
self
.
_sizes
=
None
self
.
virtual_size_per_dataset
=
None
# caching properties
self
.
_reset_cached_properties
()
self
.
setup_sampling
(
sampling_ratios
,
virtual_size
)
self
.
set_epoch
(
epoch
)
def
_clean_if_not_none
(
self
,
var_list
):
for
v
in
var_list
:
if
v
is
not
None
:
del
v
def
_reset_cached_properties
(
self
):
self
.
_clean_if_not_none
([
self
.
_sizes
,
self
.
_cur_indices
])
self
.
_sizes
=
None
self
.
_cur_indices
=
None
def
setup_sampling
(
self
,
sample_ratios
,
virtual_size
):
sizes
=
[
len
(
d
)
for
d
in
self
.
datasets
]
if
sample_ratios
is
None
:
# default back to concating datasets
self
.
sample_ratios
=
None
self
.
virtual_size
=
sum
(
sizes
)
else
:
if
not
isinstance
(
sample_ratios
,
np
.
ndarray
):
sample_ratios
=
np
.
array
(
sample_ratios
)
self
.
sample_ratios
=
sample_ratios
virtual_size
=
(
default_virtual_size_func
if
virtual_size
is
None
else
virtual_size
)
self
.
virtual_size
=
(
virtual_size
(
self
.
datasets
,
self
.
sample_ratios
)
if
callable
(
virtual_size
)
else
virtual_size
)
def
adjust_sampling
(
self
,
epoch
,
sampling_ratios
,
virtual_size
):
if
sampling_ratios
is
not
None
:
sampling_ratios
=
self
.
_sync_sample_ratios
(
sampling_ratios
)
self
.
setup_sampling
(
sampling_ratios
,
virtual_size
)
def
_sync_sample_ratios
(
self
,
ratios
):
# in case the ratios are not precisely the same across processes
# also to ensure every procresses update the ratios in the same pace
ratios
=
torch
.
DoubleTensor
(
ratios
)
if
torch
.
distributed
.
is_initialized
():
if
torch
.
cuda
.
is_available
():
distributed_utils
.
all_reduce
(
ratios
.
cuda
(),
group
=
distributed_utils
.
get_data_parallel_group
()
)
else
:
distributed_utils
.
all_reduce
(
ratios
,
group
=
distributed_utils
.
get_data_parallel_group
()
)
ret
=
ratios
.
cpu
()
ret
=
ret
.
numpy
()
return
ret
def
random_choice_in_dataset
(
self
,
rng
,
dataset
,
choice_size
):
if
hasattr
(
dataset
,
"random_choice_in_dataset"
):
return
dataset
.
random_choice_in_dataset
(
rng
,
choice_size
)
dataset_size
=
len
(
dataset
)
return
rng
.
choice
(
dataset_size
,
choice_size
,
replace
=
(
choice_size
>
dataset_size
)
)
def
get_virtual_indices
(
self
,
rng
,
datasets
,
sample_ratios
,
virtual_size
):
def
get_counts
(
sample_ratios
):
counts
=
np
.
array
([
virtual_size
*
r
for
r
in
sample_ratios
],
dtype
=
np
.
int64
)
diff
=
virtual_size
-
counts
.
sum
()
assert
diff
>=
0
# due to round-offs, the size might not match the desired sizes
if
diff
>
0
:
dataset_indices
=
rng
.
choice
(
len
(
sample_ratios
),
size
=
diff
,
p
=
sample_ratios
)
for
i
in
dataset_indices
:
counts
[
i
]
+=
1
return
counts
def
get_in_dataset_indices
(
datasets
,
sizes
,
sample_ratios
):
counts
=
get_counts
(
sample_ratios
)
# uniformally sample desired counts for each dataset
# if the desired counts are large, sample with replacement:
indices
=
[
self
.
random_choice_in_dataset
(
rng
,
d
,
c
)
for
c
,
d
in
zip
(
counts
,
datasets
)
]
return
indices
sizes
=
[
len
(
d
)
for
d
in
datasets
]
if
sample_ratios
is
None
:
# default back to concating datasets
in_dataset_indices
=
[
list
(
range
(
s
))
for
s
in
sizes
]
virtual_sizes_per_dataset
=
sizes
else
:
ratios
=
sample_ratios
/
sample_ratios
.
sum
()
in_dataset_indices
=
get_in_dataset_indices
(
datasets
,
sizes
,
ratios
)
virtual_sizes_per_dataset
=
[
len
(
d
)
for
d
in
in_dataset_indices
]
virtual_sizes_per_dataset
=
np
.
array
(
virtual_sizes_per_dataset
,
np
.
int64
)
cumulative_sizes
=
np
.
cumsum
(
virtual_sizes_per_dataset
)
assert
sum
(
virtual_sizes_per_dataset
)
==
virtual_size
assert
cumulative_sizes
[
-
1
]
==
virtual_size
if
virtual_size
<
sum
(
sizes
):
logger
.
warning
(
f
"virtual data size (
{
virtual_size
}
) is less than real data size (
{
sum
(
sizes
)
}
)."
" If virtual size << real data size, there could be data coverage issue."
)
in_dataset_indices
=
np
.
hstack
(
in_dataset_indices
)
return
in_dataset_indices
,
cumulative_sizes
,
virtual_sizes_per_dataset
def
_get_dataset_and_index
(
self
,
index
):
i
=
bisect_right
(
self
.
cumulated_sizes
,
index
)
return
i
,
self
.
_cur_indices
[
index
]
def
__getitem__
(
self
,
index
):
# self.__getitem__(index) returns self.datasets[k][self._cur_indices[index]]
# where k satisfies self.cumulated_sizes[k - 1] <= k < self.cumulated_sizes[k]
ds_idx
,
ds_sample_idx
=
self
.
_get_dataset_and_index
(
index
)
ret
=
(
ds_idx
,
self
.
datasets
[
ds_idx
][
ds_sample_idx
])
return
ret
def
num_tokens
(
self
,
index
):
return
self
.
sizes
[
index
].
max
()
def
num_tokens_vec
(
self
,
indices
):
sizes_vec
=
self
.
sizes
[
np
.
array
(
indices
)]
# max across all dimensions but first one
return
np
.
amax
(
sizes_vec
,
axis
=
tuple
(
range
(
1
,
len
(
sizes_vec
.
shape
))))
def
size
(
self
,
index
):
return
self
.
sizes
[
index
]
def
__len__
(
self
):
return
self
.
virtual_size
def
collater
(
self
,
samples
,
**
extra_args
):
"""Merge a list of samples to form a mini-batch."""
if
len
(
samples
)
==
0
:
return
None
if
self
.
collate_format
==
"ordered_dict"
:
collect_samples
=
[[]
for
_
in
range
(
len
(
self
.
datasets
))]
for
(
i
,
sample
)
in
samples
:
collect_samples
[
i
].
append
(
sample
)
batch
=
OrderedDict
(
[
(
self
.
keys
[
i
],
dataset
.
collater
(
collect_samples
[
i
]))
for
i
,
(
key
,
dataset
)
in
enumerate
(
zip
(
self
.
keys
,
self
.
datasets
))
if
len
(
collect_samples
[
i
])
>
0
]
)
elif
self
.
shared_collater
:
batch
=
self
.
datasets
[
0
].
collater
([
s
for
_
,
s
in
samples
])
else
:
samples_dict
=
defaultdict
(
list
)
pad_to_length
=
(
defaultdict
(
int
)
if
"pad_to_length"
not
in
extra_args
else
extra_args
[
"pad_to_length"
]
)
for
ds_idx
,
s
in
samples
:
pad_to_length
[
"source"
]
=
max
(
pad_to_length
[
"source"
],
s
[
"source"
].
size
(
0
)
)
if
s
[
"target"
]
is
not
None
:
pad_to_length
[
"target"
]
=
max
(
pad_to_length
[
"target"
],
s
[
"target"
].
size
(
0
)
)
samples_dict
[
ds_idx
].
append
(
s
)
batches
=
[
self
.
datasets
[
i
].
collater
(
samples_dict
[
i
],
pad_to_length
=
pad_to_length
)
for
i
in
range
(
len
(
self
.
datasets
))
if
len
(
samples_dict
[
i
])
>
0
]
def
straight_data
(
tensors
):
batch
=
torch
.
cat
(
tensors
,
dim
=
0
)
return
batch
src_lengths
=
straight_data
(
[
b
[
"net_input"
][
"src_lengths"
]
for
b
in
batches
]
)
src_lengths
,
sort_order
=
src_lengths
.
sort
(
descending
=
True
)
def
straight_order
(
tensors
):
batch
=
straight_data
(
tensors
)
return
batch
.
index_select
(
0
,
sort_order
)
batch
=
{
"id"
:
straight_order
([
b
[
"id"
]
for
b
in
batches
]),
"nsentences"
:
sum
(
b
[
"nsentences"
]
for
b
in
batches
),
"ntokens"
:
sum
(
b
[
"ntokens"
]
for
b
in
batches
),
"net_input"
:
{
"src_tokens"
:
straight_order
(
[
b
[
"net_input"
][
"src_tokens"
]
for
b
in
batches
]
),
"src_lengths"
:
src_lengths
,
},
"target"
:
straight_order
([
b
[
"target"
]
for
b
in
batches
])
if
batches
[
0
][
"target"
]
is
not
None
else
None
,
}
if
"prev_output_tokens"
in
batches
[
0
][
"net_input"
]:
batch
[
"net_input"
][
"prev_output_tokens"
]
=
straight_order
(
[
b
[
"net_input"
][
"prev_output_tokens"
]
for
b
in
batches
]
)
if
"src_lang_id"
in
batches
[
0
][
"net_input"
]:
batch
[
"net_input"
][
"src_lang_id"
]
=
straight_order
(
[
b
[
"net_input"
][
"src_lang_id"
]
for
b
in
batches
]
)
if
"tgt_lang_id"
in
batches
[
0
]:
batch
[
"tgt_lang_id"
]
=
straight_order
(
[
b
[
"tgt_lang_id"
]
for
b
in
batches
]
)
return
batch
@
property
def
sizes
(
self
):
if
self
.
_sizes
is
not
None
:
return
self
.
_sizes
start_time
=
time
.
time
()
in_sub_dataset_indices
=
[
self
.
_cur_indices
[
0
if
i
==
0
else
self
.
cumulated_sizes
[
i
-
1
]
:
self
.
cumulated_sizes
[
i
]
]
for
i
in
range
(
len
(
self
.
datasets
))
]
sub_dataset_sizes
=
[
d
.
sizes
[
indices
]
for
d
,
indices
in
zip
(
self
.
datasets
,
in_sub_dataset_indices
)
]
self
.
_sizes
=
np
.
vstack
(
sub_dataset_sizes
)
logger
.
info
(
f
"sizes() calling time:
{
get_time_gap
(
start_time
,
time
.
time
())
}
"
)
return
self
.
_sizes
def
ordered_indices
(
self
):
if
self
.
shuffle
:
indices
=
np
.
random
.
permutation
(
len
(
self
))
else
:
indices
=
np
.
arange
(
len
(
self
))
sizes
=
self
.
sizes
tgt_sizes
=
sizes
[:,
1
]
if
len
(
sizes
.
shape
)
>
0
and
sizes
.
shape
[
1
]
>
1
else
None
src_sizes
=
(
sizes
[:,
0
]
if
len
(
sizes
.
shape
)
>
0
and
sizes
.
shape
[
1
]
>
1
else
sizes
)
# sort by target length, then source length
if
tgt_sizes
is
not
None
:
indices
=
indices
[
np
.
argsort
(
tgt_sizes
[
indices
],
kind
=
"mergesort"
)]
sort_indices
=
indices
[
np
.
argsort
(
src_sizes
[
indices
],
kind
=
"mergesort"
)]
return
sort_indices
def
prefetch
(
self
,
indices
):
prefetch_indices
=
[[]
for
_
in
range
(
len
(
self
.
datasets
))]
for
i
in
indices
:
ds_idx
,
ds_sample_idx
=
self
.
_get_dataset_and_index
(
i
)
prefetch_indices
[
ds_idx
].
append
(
ds_sample_idx
)
for
i
in
range
(
len
(
prefetch_indices
)):
self
.
datasets
[
i
].
prefetch
(
prefetch_indices
[
i
])
@
property
def
can_reuse_epoch_itr_across_epochs
(
self
):
return
False
def
set_epoch
(
self
,
epoch
):
super
().
set_epoch
(
epoch
)
if
epoch
==
self
.
_cur_epoch
:
# re-enter so return
return
for
d
in
self
.
datasets
:
if
hasattr
(
d
,
"set_epoch"
):
d
.
set_epoch
(
epoch
)
self
.
_cur_epoch
=
epoch
self
.
_establish_virtual_datasets
()
def
_establish_virtual_datasets
(
self
):
if
self
.
sample_ratios
is
None
and
self
.
_cur_indices
is
not
None
:
# not a samping dataset, no need to resample if indices are already established
return
self
.
_reset_cached_properties
()
start_time
=
time
.
time
()
# Generate a weighted sample of indices as a function of the
# random seed and the current epoch.
rng
=
np
.
random
.
RandomState
(
[
int
(
hashlib
.
sha1
(
str
(
self
.
__class__
.
__name__
).
encode
(
"utf-8"
)
).
hexdigest
(),
16
,
)
%
(
2
**
32
),
self
.
seed
%
(
2
**
32
),
# global seed
self
.
_cur_epoch
,
# epoch index,
]
)
self
.
_clean_if_not_none
(
[
self
.
cumulated_sizes
,
self
.
virtual_size_per_dataset
,
self
.
_sizes
]
)
self
.
_sizes
=
None
indices
,
cumulated_sizes
,
virtual_size_per_dataset
=
self
.
get_virtual_indices
(
rng
,
self
.
datasets
,
self
.
sample_ratios
,
self
.
virtual_size
)
self
.
_cur_indices
=
indices
self
.
cumulated_sizes
=
cumulated_sizes
self
.
virtual_size_per_dataset
=
virtual_size_per_dataset
raw_sizes
=
[
len
(
d
)
for
d
in
self
.
datasets
]
sampled_sizes
=
self
.
virtual_size_per_dataset
logger
.
info
(
f
"[
{
self
.
split
}
] Raw sizes:
{
str
(
dict
(
zip
(
self
.
keys
,
raw_sizes
)))
}
; "
f
"raw total size:
{
sum
(
raw_sizes
)
}
"
)
logger
.
info
(
f
"[
{
self
.
split
}
] Resampled sizes:
{
str
(
dict
(
zip
(
self
.
keys
,
sampled_sizes
)))
}
; "
f
"resampled total size:
{
sum
(
sampled_sizes
)
}
"
)
if
self
.
sample_ratios
is
not
None
:
logger
.
info
(
f
"[
{
self
.
split
}
] Upsampling ratios:
{
str
(
dict
(
zip
(
self
.
keys
,
self
.
sample_ratios
)))
}
"
)
else
:
logger
.
info
(
f
"[
{
self
.
split
}
] A concat dataset"
)
logger
.
info
(
f
"[
{
self
.
split
}
] virtual dataset established time:
{
get_time_gap
(
start_time
,
time
.
time
())
}
"
)
def
filter_indices_by_size
(
self
,
indices
,
max_sizes
):
"""Filter a list of sample indices. Remove those that are longer
than specified in max_sizes.
Args:
indices (np.array): original array of sample indices
max_sizes (int or list[int] or tuple[int]): max sample size,
can be defined separately for src and tgt (then list or tuple)
Returns:
np.array: filtered sample array
list: list of removed indices
"""
sizes
=
self
.
sizes
tgt_sizes
=
sizes
[:,
1
]
if
len
(
sizes
.
shape
)
>
0
and
sizes
.
shape
[
1
]
>
1
else
None
src_sizes
=
(
sizes
[:,
0
]
if
len
(
sizes
.
shape
)
>
0
and
sizes
.
shape
[
1
]
>
1
else
sizes
)
return
data_utils
.
filter_paired_dataset_indices_by_size
(
src_sizes
,
tgt_sizes
,
indices
,
max_sizes
)
PyTorch/NLP/new-Transformer/fairseq/data/multilingual/sampled_multi_epoch_dataset.py
0 → 100644
View file @
c0f05c10
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import
hashlib
import
logging
import
math
import
numpy
as
np
from
fairseq.data
import
SampledMultiDataset
from
.sampled_multi_dataset
import
CollateFormat
,
default_virtual_size_func
logger
=
logging
.
getLogger
(
__name__
)
class
SampledMultiEpochDataset
(
SampledMultiDataset
):
"""Samples from multiple sub-datasets according to sampling ratios
using virtual epoch sizes to speed up dataloading.
Args:
datasets (
List[~torch.utils.data.Dataset]
or OrderedDict[str, ~torch.utils.data.Dataset]
): datasets
sampling_ratios (List[float]): list of probability of each dataset to be sampled
(default: None, which corresponds to concating all dataset together).
seed (int): RNG seed to use (default: 2).
epoch (int): starting epoch number (default: 1).
eval_key (str, optional): a key used at evaluation time that causes
this instance to pass-through batches from *datasets[eval_key]*.
collate_format (CollateFormat): collater output format, either CollateFormat.ordered_dict or
CollateFormat.single (default: CollateFormat.single) where CollateFormat.single configures
the collater to output batches of data mixed from all sub-datasets,
and CollateFormat.ordered_dict configures the collater to output a dictionary of batches indexed by keys
of sub-datasets.
Note that not all sub-datasets will present in a single batch in both formats.
virtual_size (int, or callable): the expected virtual size of the dataset (default: default_virtual_size_func).
split (str): the split of the data, e.g. 'train', 'valid' or 'test'.
virtual_epoch_size (int): virtual epoch size, the dataset will go through the data by
this virtual epoch size one by one to speed up data loading, e.g. indicing and filtering
can be performed whenever a virtual epoch is loaded without waiting for the whole dataset to be loaded.
shared_collater (bool): whether or not to all sub-datasets have the same collater.
shard_epoch (int): the real epoch number for shard selection.
shuffle (bool): whether or not to shuffle data (default: True).
"""
def
__init__
(
self
,
datasets
,
sampling_ratios
=
None
,
seed
=
2
,
epoch
=
1
,
eval_key
=
None
,
collate_format
=
CollateFormat
.
single
,
virtual_size
=
default_virtual_size_func
,
split
=
""
,
virtual_epoch_size
=
None
,
shared_collater
=
False
,
shard_epoch
=
1
,
shuffle
=
True
,
):
self
.
virtual_epoch_size
=
virtual_epoch_size
self
.
_current_epoch_start_index
=
None
self
.
_random_global_indices
=
None
self
.
shard_epoch
=
shard_epoch
if
shard_epoch
is
not
None
else
1
self
.
load_next_shard
=
None
self
.
_epoch_sizes
=
None
super
().
__init__
(
datasets
=
datasets
,
sampling_ratios
=
sampling_ratios
,
seed
=
seed
,
epoch
=
epoch
,
eval_key
=
eval_key
,
collate_format
=
collate_format
,
virtual_size
=
virtual_size
,
split
=
split
,
shared_collater
=
shared_collater
,
shuffle
=
shuffle
,
)
def
_setup
(
self
,
epoch
):
self
.
virtual_epoch_size
=
(
self
.
virtual_epoch_size
if
self
.
virtual_epoch_size
is
not
None
else
self
.
virtual_size
)
if
self
.
virtual_epoch_size
>
self
.
virtual_size
:
logger
.
warning
(
f
"virtual epoch size
{
self
.
virtual_epoch_size
}
"
f
"is greater than virtual dataset size
{
self
.
virtual_size
}
"
)
self
.
virtual_epoch_size
=
self
.
virtual_size
self
.
num_virtual_epochs
=
math
.
ceil
(
self
.
virtual_size
/
self
.
virtual_epoch_size
)
self
.
_current_epoch_start_index
=
self
.
_get_epoch_start_index
(
epoch
)
logger
.
info
(
f
"virtual epoch size
{
self
.
virtual_epoch_size
}
; virtual dataset size
{
self
.
virtual_size
}
"
)
def
_map_epoch_index_to_global
(
self
,
index
):
index
=
self
.
_current_epoch_start_index
+
index
# add randomness
return
self
.
_random_global_indices
[
index
]
@
property
def
sizes
(
self
):
if
self
.
_epoch_sizes
is
not
None
:
return
self
.
_epoch_sizes
_sizes
=
super
().
sizes
indices
=
self
.
_random_global_indices
[
self
.
_current_epoch_start_index
:
self
.
_current_epoch_start_index
+
len
(
self
)
]
self
.
_epoch_sizes
=
_sizes
[
indices
]
# del super()._sizes to save memory
del
self
.
_sizes
self
.
_sizes
=
None
return
self
.
_epoch_sizes
def
_get_dataset_and_index
(
self
,
index
):
i
=
self
.
_map_epoch_index_to_global
(
index
)
return
super
().
_get_dataset_and_index
(
i
)
def
__len__
(
self
):
return
(
self
.
virtual_epoch_size
if
self
.
_current_epoch_start_index
+
self
.
virtual_epoch_size
<
self
.
virtual_size
else
self
.
virtual_size
-
self
.
_current_epoch_start_index
)
def
set_epoch
(
self
,
epoch
):
if
self
.
_current_epoch_start_index
is
None
:
# initializing epoch idnices of a virtual dataset
self
.
_setup
(
epoch
)
self
.
_next_virtual_epoch
(
epoch
)
else
:
# working on already intialized epoch indices
if
epoch
==
self
.
_cur_epoch
:
# re-enter so return
return
self
.
_next_virtual_epoch
(
epoch
)
def
_get_epoch_start_index
(
self
,
epoch
):
assert
epoch
>=
1
# fairseq is using 1-based epoch everywhere
return
((
epoch
-
1
)
%
self
.
num_virtual_epochs
)
*
self
.
virtual_epoch_size
def
_next_global_indices
(
self
,
epoch
):
rng
=
np
.
random
.
RandomState
(
[
int
(
hashlib
.
sha1
(
str
(
self
.
__class__
.
__name__
).
encode
(
"utf-8"
)
).
hexdigest
(),
16
,
)
%
(
2
**
32
),
self
.
seed
%
(
2
**
32
),
# global seed
epoch
,
# epoch index,
]
)
del
self
.
_random_global_indices
self
.
_random_global_indices
=
rng
.
choice
(
self
.
virtual_size
,
self
.
virtual_size
,
replace
=
False
)
if
self
.
load_next_shard
is
None
:
self
.
load_next_shard
=
False
else
:
# increase shard epoch for next loading
self
.
shard_epoch
+=
1
self
.
load_next_shard
=
True
logger
.
info
(
"to load next epoch/shard in next load_dataset: "
f
"epoch=
{
epoch
}
/shard_epoch=
{
self
.
shard_epoch
}
"
)
def
_next_virtual_epoch
(
self
,
epoch
):
index
=
self
.
_get_epoch_start_index
(
epoch
)
if
index
==
0
or
self
.
_random_global_indices
is
None
:
# need to start from the beginning,
# so call super().set_epoch(epoch) to establish the global virtual indices
logger
.
info
(
"establishing a new set of global virtual indices for "
f
"epoch=
{
epoch
}
/shard_epoch=
{
self
.
shard_epoch
}
"
)
super
().
set_epoch
(
epoch
)
self
.
_next_global_indices
(
epoch
)
else
:
self
.
_cur_epoch
=
epoch
# reset cache sizes and ordered_indices for the epoch after moving to a new epoch
self
.
_clean_if_not_none
(
[
self
.
_epoch_sizes
,
]
)
self
.
_epoch_sizes
=
None
self
.
_current_epoch_start_index
=
index
PyTorch/NLP/new-Transformer/fairseq/data/multilingual/sampling_method.py
0 → 100644
View file @
c0f05c10
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import
logging
from
typing
import
List
logger
=
logging
.
getLogger
(
__name__
)
def
uniform
(
dataset_sizes
:
List
[
int
]):
return
[
1.0
]
*
len
(
dataset_sizes
)
def
temperature_sampling
(
dataset_sizes
,
temp
):
total_size
=
sum
(
dataset_sizes
)
return
[(
size
/
total_size
)
**
(
1.0
/
temp
)
for
size
in
dataset_sizes
]
def
make_temperature_sampling
(
temp
=
1.0
):
def
sampling_func
(
dataset_sizes
):
return
temperature_sampling
(
dataset_sizes
,
temp
)
return
sampling_func
def
make_ratio_sampling
(
ratios
):
def
sampling_func
(
dataset_sizes
):
return
ratios
return
sampling_func
class
SamplingMethod
:
@
staticmethod
def
add_arguments
(
parser
):
parser
.
add_argument
(
"--sampling-method"
,
choices
=
[
"uniform"
,
"temperature"
,
"concat"
,
"RoundRobin"
,
],
type
=
str
,
default
=
"concat"
,
help
=
"The method to sample data per language pairs"
,
)
parser
.
add_argument
(
"--sampling-temperature"
,
default
=
1.5
,
type
=
float
,
help
=
"only work with --sampling-method temperature"
,
)
@
staticmethod
def
build_sampler
(
args
,
task
):
return
SamplingMethod
(
args
,
task
)
def
__init__
(
self
,
args
,
task
):
self
.
args
=
args
self
.
task
=
task
def
is_adaptive
(
self
):
return
False
def
sampling_method_selector
(
self
):
args
=
self
.
args
logger
.
info
(
f
"selected sampler:
{
args
.
sampling_method
}
"
)
if
args
.
sampling_method
==
"uniform"
:
return
uniform
elif
args
.
sampling_method
==
"temperature"
or
self
.
is_adaptive
():
return
make_temperature_sampling
(
float
(
args
.
sampling_temperature
))
else
:
# default to concating all data set together
return
None
PyTorch/NLP/new-Transformer/fairseq/data/nested_dictionary_dataset.py
0 → 100644
View file @
c0f05c10
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from
collections
import
OrderedDict
import
torch
from
torch.utils.data.dataloader
import
default_collate
from
.
import
FairseqDataset
def
_flatten
(
dico
,
prefix
=
None
):
"""Flatten a nested dictionary."""
new_dico
=
OrderedDict
()
if
isinstance
(
dico
,
dict
):
prefix
=
prefix
+
"."
if
prefix
is
not
None
else
""
for
k
,
v
in
dico
.
items
():
if
v
is
None
:
continue
new_dico
.
update
(
_flatten
(
v
,
prefix
+
k
))
elif
isinstance
(
dico
,
list
):
for
i
,
v
in
enumerate
(
dico
):
new_dico
.
update
(
_flatten
(
v
,
prefix
+
".["
+
str
(
i
)
+
"]"
))
else
:
new_dico
=
OrderedDict
({
prefix
:
dico
})
return
new_dico
def
_unflatten
(
dico
):
"""Unflatten a flattened dictionary into a nested dictionary."""
new_dico
=
OrderedDict
()
for
full_k
,
v
in
dico
.
items
():
full_k
=
full_k
.
split
(
"."
)
node
=
new_dico
for
k
in
full_k
[:
-
1
]:
if
k
.
startswith
(
"["
)
and
k
.
endswith
(
"]"
):
k
=
int
(
k
[
1
:
-
1
])
if
k
not
in
node
:
node
[
k
]
=
OrderedDict
()
node
=
node
[
k
]
node
[
full_k
[
-
1
]]
=
v
return
new_dico
class
NestedDictionaryDataset
(
FairseqDataset
):
def
__init__
(
self
,
defn
,
sizes
=
None
):
super
().
__init__
()
self
.
defn
=
_flatten
(
defn
)
self
.
sizes
=
[
sizes
]
if
not
isinstance
(
sizes
,
(
list
,
tuple
))
else
sizes
first
=
None
for
v
in
self
.
defn
.
values
():
if
not
isinstance
(
v
,
(
FairseqDataset
,
torch
.
utils
.
data
.
Dataset
,
),
):
raise
ValueError
(
"Expected Dataset but found: {}"
.
format
(
v
.
__class__
))
first
=
first
or
v
if
len
(
v
)
>
0
:
assert
len
(
v
)
==
len
(
first
),
"dataset lengths must match"
self
.
_len
=
len
(
first
)
def
__getitem__
(
self
,
index
):
return
OrderedDict
((
k
,
ds
[
index
])
for
k
,
ds
in
self
.
defn
.
items
())
def
__len__
(
self
):
return
self
.
_len
def
collater
(
self
,
samples
):
"""Merge a list of samples to form a mini-batch.
Args:
samples (List[dict]): samples to collate
Returns:
dict: a mini-batch suitable for forwarding with a Model
"""
if
len
(
samples
)
==
0
:
return
{}
sample
=
OrderedDict
()
for
k
,
ds
in
self
.
defn
.
items
():
try
:
sample
[
k
]
=
ds
.
collater
([
s
[
k
]
for
s
in
samples
])
except
NotImplementedError
:
sample
[
k
]
=
default_collate
([
s
[
k
]
for
s
in
samples
])
return
_unflatten
(
sample
)
def
num_tokens
(
self
,
index
):
"""Return the number of tokens in a sample. This value is used to
enforce ``--max-tokens`` during batching."""
return
max
(
s
[
index
]
for
s
in
self
.
sizes
)
def
size
(
self
,
index
):
"""Return an example's size as a float or tuple. This value is used when
filtering a dataset with ``--max-positions``."""
if
len
(
self
.
sizes
)
==
1
:
return
self
.
sizes
[
0
][
index
]
else
:
return
(
s
[
index
]
for
s
in
self
.
sizes
)
@
property
def
supports_prefetch
(
self
):
"""Whether this dataset supports prefetching."""
return
any
(
ds
.
supports_prefetch
for
ds
in
self
.
defn
.
values
())
def
prefetch
(
self
,
indices
):
"""Prefetch the data required for this epoch."""
for
ds
in
self
.
defn
.
values
():
if
getattr
(
ds
,
"supports_prefetch"
,
False
):
ds
.
prefetch
(
indices
)
@
property
def
can_reuse_epoch_itr_across_epochs
(
self
):
return
all
(
ds
.
can_reuse_epoch_itr_across_epochs
for
ds
in
self
.
defn
.
values
())
def
set_epoch
(
self
,
epoch
):
super
().
set_epoch
(
epoch
)
for
ds
in
self
.
defn
.
values
():
ds
.
set_epoch
(
epoch
)
Prev
1
…
8
9
10
11
12
13
14
15
16
17
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment