"src/vscode:/vscode.git/clone" did not exist on "6e89a481be7e35bb59b8fbaf8000b754f5bcbade"
Commit a4372e17 authored by huchen's avatar huchen
Browse files

Merge branch 'hepj_work' into 'main'

增加conformer代码

See merge request dcutoolkit/deeplearing/dlexamples_new!7
parents 7f99c1c3 142dcf29
---
name: Feature request
about: Suggest an idea for this project
title: ''
labels: ''
assignees: ''
---
**Describe the feature**
**Motivation**
A clear and concise description of the motivation of the feature.
Ex1. It is inconvenient when [....].
Ex2. There is a recent paper [....], which is very helpful for [....].
**Related resources**
If there is an official code release or third-party implementations, please also provide the information here, which would be very helpful.
**Additional context**
Add any other context or screenshots about the feature request here.
If you would like to implement the feature and create a PR, please leave a comment here and that would be much appreciated.
---
name: General questions
about: Ask general questions to get help
title: ''
labels: ''
assignees: ''
---
---
name: Reimplementation Questions
about: Ask about questions during model reimplementation
title: ''
labels: 'reimplementation'
assignees: ''
---
**Notice**
There are several common situations in the reimplementation issues as below
1. Reimplement a model in the model zoo using the provided configs
2. Reimplement a model in the model zoo on other dataset (e.g., custom datasets)
3. Reimplement a custom model but all the components are implemented in MMDetection
4. Reimplement a custom model with new modules implemented by yourself
There are several things to do for different cases as below.
- For case 1 & 3, please follow the steps in the following sections thus we could help to quick identify the issue.
- For case 2 & 4, please understand that we are not able to do much help here because we usually do not know the full code and the users should be responsible to the code they write.
- One suggestion for case 2 & 4 is that the users should first check whether the bug lies in the self-implemented code or the original code. For example, users can first make sure that the same model runs well on supported datasets. If you still need help, please describe what you have done and what you obtain in the issue, and follow the steps in the following sections and try as clear as possible so that we can better help you.
**Checklist**
1. I have searched related issues but cannot get the expected help.
2. The issue has not been fixed in the latest version.
**Describe the issue**
A clear and concise description of what the problem you meet and what have you done.
**Reproduction**
1. What command or script did you run?
```none
A placeholder for the command.
```
2. What config dir you run?
```none
A placeholder for the config.
```
3. Did you make any modifications on the code or config? Did you understand what you have modified?
4. What dataset did you use?
**Environment**
1. Please run `python mmdet/utils/collect_env.py` to collect necessary environment information and paste it here.
2. You may add addition that may be helpful for locating the problem, such as
1. How you installed PyTorch [e.g., pip, conda, source]
2. Other environment variables that may be related (such as `$PATH`, `$LD_LIBRARY_PATH`, `$PYTHONPATH`, etc.)
**Results**
If applicable, paste the related results here, e.g., what you expect and what you get.
```none
A placeholder for results comparison
```
**Issue fix**
If you have already identified the reason, you can provide the information here. If you are willing to create a PR to fix it, please also leave a comment here and that would be much appreciated!
name: build
on: [push, pull_request]
jobs:
lint:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Set up Python 3.7
uses: actions/setup-python@v2
with:
python-version: 3.7
- name: Install pre-commit hook
run: |
pip install pre-commit
pre-commit install
- name: Linting
run: pre-commit run --all-files
- name: Check docstring coverage
run: |
pip install interrogate
interrogate -v --ignore-init-method --ignore-module --ignore-nested-functions --ignore-regex "__repr__" --fail-under 80 mmdet
build_cpu:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: [3.7]
torch: [1.3.1, 1.5.1, 1.6.0]
include:
- torch: 1.3.1
torchvision: 0.4.2
mmcv: "latest+torch1.3.0+cpu"
- torch: 1.5.1
torchvision: 0.6.1
mmcv: "latest+torch1.5.0+cpu"
- torch: 1.6.0
torchvision: 0.7.0
mmcv: "latest+torch1.6.0+cpu"
steps:
- uses: actions/checkout@v2
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python-version }}
- name: Install Pillow
run: pip install Pillow==6.2.2
if: ${{matrix.torchvision == '0.4.2'}}
- name: Install PyTorch
run: pip install torch==${{matrix.torch}}+cpu torchvision==${{matrix.torchvision}}+cpu -f https://download.pytorch.org/whl/torch_stable.html
- name: Install MMCV
run: |
pip install mmcv-full==${{matrix.mmcv}} -f https://download.openmmlab.com/mmcv/dist/index.html --use-deprecated=legacy-resolver
python -c 'import mmcv; print(mmcv.__version__)'
- name: Install unittest dependencies
run: pip install -r requirements/tests.txt -r requirements/optional.txt
- name: Build and install
run: rm -rf .eggs && pip install -e .
- name: Run unittests and generate coverage report
run: |
coverage run --branch --source mmdet -m pytest tests/
coverage xml
coverage report -m
build_cuda:
runs-on: ubuntu-latest
env:
CUDA: 10.1.105-1
CUDA_SHORT: 10.1
UBUNTU_VERSION: ubuntu1804
strategy:
matrix:
python-version: [3.7]
torch: [1.3.1, 1.5.1+cu101, 1.6.0+cu101]
include:
- torch: 1.3.1
torchvision: 0.4.2
mmcv: "latest+torch1.3.0+cu101"
- torch: 1.5.1+cu101
torchvision: 0.6.1+cu101
mmcv: "latest+torch1.5.0+cu101"
- torch: 1.6.0+cu101
torchvision: 0.7.0+cu101
mmcv: "latest+torch1.6.0+cu101"
- torch: 1.6.0+cu101
torchvision: 0.7.0+cu101
mmcv: "latest+torch1.6.0+cu101"
python-version: 3.6
- torch: 1.6.0+cu101
torchvision: 0.7.0+cu101
mmcv: "latest+torch1.6.0+cu101"
python-version: 3.8
steps:
- uses: actions/checkout@v2
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python-version }}
- name: Install CUDA
run: |
export INSTALLER=cuda-repo-${UBUNTU_VERSION}_${CUDA}_amd64.deb
wget http://developer.download.nvidia.com/compute/cuda/repos/${UBUNTU_VERSION}/x86_64/${INSTALLER}
sudo dpkg -i ${INSTALLER}
wget https://developer.download.nvidia.com/compute/cuda/repos/${UBUNTU_VERSION}/x86_64/7fa2af80.pub
sudo apt-key add 7fa2af80.pub
sudo apt update -qq
sudo apt install -y cuda-${CUDA_SHORT/./-} cuda-cufft-dev-${CUDA_SHORT/./-}
sudo apt clean
export CUDA_HOME=/usr/local/cuda-${CUDA_SHORT}
export LD_LIBRARY_PATH=${CUDA_HOME}/lib64:${CUDA_HOME}/include:${LD_LIBRARY_PATH}
export PATH=${CUDA_HOME}/bin:${PATH}
- name: Install Pillow
run: pip install Pillow==6.2.2
if: ${{matrix.torchvision < 0.5}}
- name: Install PyTorch
run: pip install torch==${{matrix.torch}} torchvision==${{matrix.torchvision}} -f https://download.pytorch.org/whl/torch_stable.html
- name: Install mmdet dependencies
run: |
pip install mmcv-full==${{matrix.mmcv}} -f https://download.openmmlab.com/mmcv/dist/index.html --use-deprecated=legacy-resolver
pip install -r requirements.txt
python -c 'import mmcv; print(mmcv.__version__)'
- name: Build and install
run: |
rm -rf .eggs
python setup.py check -m -s
TORCH_CUDA_ARCH_LIST=7.0 pip install .
- name: Run unittests and generate coverage report
run: |
coverage run --branch --source mmdet -m pytest tests/
coverage xml
coverage report -m
- name: Upload coverage to Codecov
uses: codecov/codecov-action@v1.0.10
with:
file: ./coverage.xml
flags: unittests
env_vars: OS,PYTHON
name: codecov-umbrella
fail_ci_if_error: false
name: build_pat
on: push
jobs:
build_parrots:
runs-on: ubuntu-latest
container:
image: ghcr.io/sunnyxiaohu/parrots-mmcv:1.2.1
credentials:
username: sunnyxiaohu
password: ${{secrets.CR_PAT}}
steps:
- uses: actions/checkout@v2
- name: Install mmdet dependencies
run: |
git clone https://github.com/open-mmlab/mmcv.git && cd mmcv
MMCV_WITH_OPS=1 python setup.py install
cd .. && rm -rf mmcv
python -c 'import mmcv; print(mmcv.__version__)'
pip install -r requirements.txt
- name: Build and install
run: rm -rf .eggs && pip install -e .
name: deploy
on: push
jobs:
build-n-publish:
runs-on: ubuntu-latest
if: startsWith(github.event.ref, 'refs/tags')
steps:
- uses: actions/checkout@v2
- name: Set up Python 3.7
uses: actions/setup-python@v2
with:
python-version: 3.7
- name: Install torch
run: pip install torch
- name: Install wheel
run: pip install wheel
- name: Build MMDetection
run: python setup.py sdist bdist_wheel
- name: Publish distribution to PyPI
run: |
pip install twine
twine upload dist/* -u __token__ -p ${{ secrets.pypi_password }}
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
.hypothesis/
.pytest_cache/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
target/
# Jupyter Notebook
.ipynb_checkpoints
# pyenv
.python-version
# celery beat schedule file
celerybeat-schedule
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
data/
data
.vscode
.idea
.DS_Store
# custom
*.pkl
*.pkl.json
*.log.json
work_dirs/
# Pytorch
*.pth
*.py~
*.sh~
version: 2
python:
version: 3.7
install:
- requirements: requirements/docs.txt
- requirements: requirements/readthedocs.txt
Copyright 2018-2019 Open-MMLab. All rights reserved.
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright 2018-2019 Open-MMLab.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
## Notice
The code is forked from official [project](https://github.com/open-mmlab/mmdetection). **So the basic install and usage of mmdetection can be found in** [get_started.md](https://github.com/open-mmlab/mmdetection/blob/master/docs/get_started.md). We just add Conformer as a backbone in `mmdet/models/backbones/Conformer.py`.
At present, we use the feature maps of different stages in the CNN branch as the input of FPN, so that it can be quickly applied to the detection algorithm based on the feature pyramid. **At the same time, we think that how to use the features of Transformer branch for detection is also an interesting problem.**
## Training and inference under different detction algorithms
We provide some config files in `configs/`. And anyone can use Conformer to replace the backbone in the existing detection algorithms. We take the `Faster R-CNN` algorithm as an example to illustrate how to perform training and inference:
```bash
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
export OMP_NUM_THREADS=1
GPU_NUM=8
CONFIG="./configs/faster_rcnn/faster_rcnn_conformer_small_patch32_fpn_1x_coco.py"
WORK_DIR='./work_dir/faster_rcnn_conformer_small_patch32_lr_1e_4_fpn_1x_coco_1344_800'
# Train
python -m torch.distributed.launch --nproc_per_node=${GPU_NUM} --master_port=50040 --use_env ./tools/train.py ${CONFIG} --work-dir ${WORK_DIR} --gpus ${GPU_NUM} --launcher pytorch --cfg-options model.pretrained='./pretrain_models/Conformer_small_patch32.pth' model.backbone.patch_size=32
# Test on multiple cards
python -m torch.distributed.launch --nproc_per_node=${GPU_NUM} --master_port=50040 --use_env ./tools/test.py ${CONFIG} ${WORK_DIR}/latest.pth --launcher pytorch --eval bbox
# Test on single card
#./tools/test.py ${CONFIG} ${WORK_DIR}/latest.pth --eval bbox
```
Here, we use the `Conformer_small_patch32` as backbone network, whose pretrain model weight can be downloaded from [baidu (k7q5)](https://pan.baidu.com/s/1pum_kOOwQYn404ZeGzjMlg) or [google drive](https://drive.google.com/file/d/1UrvRg2hnXsie_z_y39Xavdts4qfrwZ1E/view?usp=sharing). And the results are shown as following:
| Method | Parameters | MACs | FPS | Bbox mAP | Model link | Log link |
| ------------ | ---------- | ------ | ------ | --------- | ---- |---- |
| Faster R-CNN | 55.4 M | 288.4 G | 13.5 | 43.1 | [baidu](https://pan.baidu.com/s/1lkZy_FTLeCRg3rVH8dOKOA)(7ax9) [google](https://drive.google.com/drive/folders/1gCvcW3Zhqq8KK5GnAr9So7-5uJwnrZcA?usp=sharing) | [baidu](https://pan.baidu.com/s/10HTtS8FozMSYfHJv8L2H5w)(ymv4)|
| Mask R-CNN | 58.1 M | 341.4 G | 10.9 | 43.6 | [baidu](https://pan.baidu.com/s/1wqvhbq4ePAPIZFqE0aCWEQ)(qkwq) [google](https://drive.google.com/drive/folders/1mjoReWPoBSMUIjBQE5VlhQf0XZ2sE7J-?usp=sharing)|[baidu](https://pan.baidu.com/s/1lSq7hMTSA8fN7WNXTZqp7g)(gh2v)|
|PAA (1x single scale)| - | - | - | 46.5 | (coming soon) | -|
|Cascade Mask RCNN (1x single scale)| - | - | - | 47.3 | (coming soon) | -|
## Update Detection Performance
| Method | Schedule | Parameters | MACs | FPS | Bbox mAP | Segm mAP |
| ------------ | ----- | ----- | ------ | ------ | --------- | ---- |
Faster R-CNN | 1x | 55.4 M | 288.4 G | 13.5 | 43.7 | - |
Faster R-CNN | 3x | 55.4 M | 288.4 G | 13.5 | 46.1 | - |
dataset_type = 'CityscapesDataset'
data_root = 'data/cityscapes/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='Resize', img_scale=[(2048, 800), (2048, 1024)], keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(2048, 1024),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=1,
workers_per_gpu=2,
train=dict(
type='RepeatDataset',
times=8,
dataset=dict(
type=dataset_type,
ann_file=data_root +
'annotations/instancesonly_filtered_gtFine_train.json',
img_prefix=data_root + 'leftImg8bit/train/',
pipeline=train_pipeline)),
val=dict(
type=dataset_type,
ann_file=data_root +
'annotations/instancesonly_filtered_gtFine_val.json',
img_prefix=data_root + 'leftImg8bit/val/',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
ann_file=data_root +
'annotations/instancesonly_filtered_gtFine_test.json',
img_prefix=data_root + 'leftImg8bit/test/',
pipeline=test_pipeline))
evaluation = dict(interval=1, metric='bbox')
dataset_type = 'CityscapesDataset'
data_root = 'data/cityscapes/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
dict(
type='Resize', img_scale=[(2048, 800), (2048, 1024)], keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(2048, 1024),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=1,
workers_per_gpu=2,
train=dict(
type='RepeatDataset',
times=8,
dataset=dict(
type=dataset_type,
ann_file=data_root +
'annotations/instancesonly_filtered_gtFine_train.json',
img_prefix=data_root + 'leftImg8bit/train/',
pipeline=train_pipeline)),
val=dict(
type=dataset_type,
ann_file=data_root +
'annotations/instancesonly_filtered_gtFine_val.json',
img_prefix=data_root + 'leftImg8bit/val/',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
ann_file=data_root +
'annotations/instancesonly_filtered_gtFine_test.json',
img_prefix=data_root + 'leftImg8bit/test/',
pipeline=test_pipeline))
evaluation = dict(metric=['bbox', 'segm'])
dataset_type = 'CocoDataset'
data_root = 'data/coco/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_train2017.json',
img_prefix=data_root + 'train2017/',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
pipeline=test_pipeline))
evaluation = dict(interval=1, metric='bbox')
dataset_type = 'CocoDataset'
data_root = 'data/coco/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_train2017.json',
img_prefix=data_root + 'train2017/',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
pipeline=test_pipeline))
evaluation = dict(metric=['bbox', 'segm'])
dataset_type = 'CocoDataset'
data_root = 'data/coco/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='LoadAnnotations', with_bbox=True, with_mask=True, with_seg=True),
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='SegRescale', scale_factor=1 / 8),
dict(type='DefaultFormatBundle'),
dict(
type='Collect',
keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks', 'gt_semantic_seg']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_train2017.json',
img_prefix=data_root + 'train2017/',
seg_prefix=data_root + 'stuffthingmaps/train2017/',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
pipeline=test_pipeline))
evaluation = dict(metric=['bbox', 'segm'])
# dataset settings
dataset_type = 'DeepFashionDataset'
data_root = 'data/DeepFashion/In-shop/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
dict(type='Resize', img_scale=(750, 1101), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(750, 1101),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
imgs_per_gpu=2,
workers_per_gpu=1,
train=dict(
type=dataset_type,
ann_file=data_root + 'annotations/DeepFashion_segmentation_query.json',
img_prefix=data_root + 'Img/',
pipeline=train_pipeline,
data_root=data_root),
val=dict(
type=dataset_type,
ann_file=data_root + 'annotations/DeepFashion_segmentation_query.json',
img_prefix=data_root + 'Img/',
pipeline=test_pipeline,
data_root=data_root),
test=dict(
type=dataset_type,
ann_file=data_root +
'annotations/DeepFashion_segmentation_gallery.json',
img_prefix=data_root + 'Img/',
pipeline=test_pipeline,
data_root=data_root))
evaluation = dict(interval=5, metric=['bbox', 'segm'])
_base_ = 'coco_instance.py'
dataset_type = 'LVISV05Dataset'
data_root = 'data/lvis_v0.5/'
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(
_delete_=True,
type='ClassBalancedDataset',
oversample_thr=1e-3,
dataset=dict(
type=dataset_type,
ann_file=data_root + 'annotations/lvis_v0.5_train.json',
img_prefix=data_root + 'train2017/')),
val=dict(
type=dataset_type,
ann_file=data_root + 'annotations/lvis_v0.5_val.json',
img_prefix=data_root + 'val2017/'),
test=dict(
type=dataset_type,
ann_file=data_root + 'annotations/lvis_v0.5_val.json',
img_prefix=data_root + 'val2017/'))
evaluation = dict(metric=['bbox', 'segm'])
_base_ = 'coco_instance.py'
dataset_type = 'LVISV1Dataset'
data_root = 'data/lvis_v1/'
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(
_delete_=True,
type='ClassBalancedDataset',
oversample_thr=1e-3,
dataset=dict(
type=dataset_type,
ann_file=data_root + 'annotations/lvis_v1_train.json',
img_prefix=data_root)),
val=dict(
type=dataset_type,
ann_file=data_root + 'annotations/lvis_v1_val.json',
img_prefix=data_root),
test=dict(
type=dataset_type,
ann_file=data_root + 'annotations/lvis_v1_val.json',
img_prefix=data_root))
evaluation = dict(metric=['bbox', 'segm'])
# dataset settings
dataset_type = 'VOCDataset'
data_root = 'data/VOCdevkit/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize', img_scale=(1000, 600), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1000, 600),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(
type='RepeatDataset',
times=3,
dataset=dict(
type=dataset_type,
ann_file=[
data_root + 'VOC2007/ImageSets/Main/trainval.txt',
data_root + 'VOC2012/ImageSets/Main/trainval.txt'
],
img_prefix=[data_root + 'VOC2007/', data_root + 'VOC2012/'],
pipeline=train_pipeline)),
val=dict(
type=dataset_type,
ann_file=data_root + 'VOC2007/ImageSets/Main/test.txt',
img_prefix=data_root + 'VOC2007/',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
ann_file=data_root + 'VOC2007/ImageSets/Main/test.txt',
img_prefix=data_root + 'VOC2007/',
pipeline=test_pipeline))
evaluation = dict(interval=1, metric='mAP')
# dataset settings
dataset_type = 'WIDERFaceDataset'
data_root = 'data/WIDERFace/'
img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[1, 1, 1], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile', to_float32=True),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='PhotoMetricDistortion',
brightness_delta=32,
contrast_range=(0.5, 1.5),
saturation_range=(0.5, 1.5),
hue_delta=18),
dict(
type='Expand',
mean=img_norm_cfg['mean'],
to_rgb=img_norm_cfg['to_rgb'],
ratio_range=(1, 4)),
dict(
type='MinIoURandomCrop',
min_ious=(0.1, 0.3, 0.5, 0.7, 0.9),
min_crop_size=0.3),
dict(type='Resize', img_scale=(300, 300), keep_ratio=False),
dict(type='Normalize', **img_norm_cfg),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(300, 300),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=False),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=60,
workers_per_gpu=2,
train=dict(
type='RepeatDataset',
times=2,
dataset=dict(
type=dataset_type,
ann_file=data_root + 'train.txt',
img_prefix=data_root + 'WIDER_train/',
min_size=17,
pipeline=train_pipeline)),
val=dict(
type=dataset_type,
ann_file=data_root + 'val.txt',
img_prefix=data_root + 'WIDER_val/',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
ann_file=data_root + 'val.txt',
img_prefix=data_root + 'WIDER_val/',
pipeline=test_pipeline))
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment