Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
dcuai
dlexamples
Commits
a32ffa95
Commit
a32ffa95
authored
Feb 03, 2023
by
qianyj
Browse files
update TensorFlow2x test method
parent
e286da17
Changes
268
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
3591 additions
and
0 deletions
+3591
-0
TensorFlow2x/ComputeVision/Classification/models-master/official/core/base_task.py
...n/Classification/models-master/official/core/base_task.py
+335
-0
TensorFlow2x/ComputeVision/Classification/models-master/official/core/base_trainer.py
...lassification/models-master/official/core/base_trainer.py
+477
-0
TensorFlow2x/ComputeVision/Classification/models-master/official/core/base_trainer_test.py
...fication/models-master/official/core/base_trainer_test.py
+385
-0
TensorFlow2x/ComputeVision/Classification/models-master/official/core/config_definitions.py
...ication/models-master/official/core/config_definitions.py
+255
-0
TensorFlow2x/ComputeVision/Classification/models-master/official/core/exp_factory.py
...Classification/models-master/official/core/exp_factory.py
+32
-0
TensorFlow2x/ComputeVision/Classification/models-master/official/core/export_base.py
...Classification/models-master/official/core/export_base.py
+133
-0
TensorFlow2x/ComputeVision/Classification/models-master/official/core/export_base_test.py
...ification/models-master/official/core/export_base_test.py
+126
-0
TensorFlow2x/ComputeVision/Classification/models-master/official/core/input_reader.py
...lassification/models-master/official/core/input_reader.py
+478
-0
TensorFlow2x/ComputeVision/Classification/models-master/official/core/registry.py
...on/Classification/models-master/official/core/registry.py
+101
-0
TensorFlow2x/ComputeVision/Classification/models-master/official/core/registry_test.py
...assification/models-master/official/core/registry_test.py
+88
-0
TensorFlow2x/ComputeVision/Classification/models-master/official/core/task_factory.py
...lassification/models-master/official/core/task_factory.py
+70
-0
TensorFlow2x/ComputeVision/Classification/models-master/official/core/test_utils.py
.../Classification/models-master/official/core/test_utils.py
+59
-0
TensorFlow2x/ComputeVision/Classification/models-master/official/core/train_lib.py
...n/Classification/models-master/official/core/train_lib.py
+150
-0
TensorFlow2x/ComputeVision/Classification/models-master/official/core/train_lib_test.py
...ssification/models-master/official/core/train_lib_test.py
+225
-0
TensorFlow2x/ComputeVision/Classification/models-master/official/core/train_utils.py
...Classification/models-master/official/core/train_utils.py
+478
-0
TensorFlow2x/ComputeVision/Classification/models-master/official/core/train_utils_test.py
...ification/models-master/official/core/train_utils_test.py
+98
-0
TensorFlow2x/ComputeVision/Classification/models-master/official/modeling/__init__.py
...lassification/models-master/official/modeling/__init__.py
+14
-0
TensorFlow2x/ComputeVision/Classification/models-master/official/modeling/activations/__init__.py
...n/models-master/official/modeling/activations/__init__.py
+21
-0
TensorFlow2x/ComputeVision/Classification/models-master/official/modeling/activations/gelu.py
...ation/models-master/official/modeling/activations/gelu.py
+32
-0
TensorFlow2x/ComputeVision/Classification/models-master/official/modeling/activations/gelu_test.py
.../models-master/official/modeling/activations/gelu_test.py
+34
-0
No files found.
Too many changes to show.
To preserve performance only
268 of 268+
files are displayed.
Plain diff
Email patch
TensorFlow2x/ComputeVision/Classification/models-master/official/core/base_task.py
0 → 100644
View file @
a32ffa95
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Defines the base task abstraction."""
import
abc
from
typing
import
Optional
from
absl
import
logging
import
tensorflow
as
tf
from
official.core
import
config_definitions
from
official.modeling
import
optimization
from
official.modeling
import
performance
OptimizationConfig
=
optimization
.
OptimizationConfig
RuntimeConfig
=
config_definitions
.
RuntimeConfig
class
Task
(
tf
.
Module
,
metaclass
=
abc
.
ABCMeta
):
"""A single-replica view of training procedure.
Tasks provide artifacts for training/validation procedures, including
loading/iterating over Datasets, training/validation steps, calculating the
loss and customized metrics with reduction.
"""
# Special keys in train/validate step returned logs.
loss
=
"loss"
def
__init__
(
self
,
params
,
logging_dir
:
Optional
[
str
]
=
None
,
name
:
Optional
[
str
]
=
None
):
"""Task initialization.
Args:
params: the task configuration instance, which can be any of dataclass,
ConfigDict, namedtuple, etc.
logging_dir: a string pointing to where the model, summaries etc. will be
saved. You can also write additional stuff in this directory.
name: the task name.
"""
super
().
__init__
(
name
=
name
)
self
.
_task_config
=
params
self
.
_logging_dir
=
logging_dir
@
property
def
task_config
(
self
):
return
self
.
_task_config
@
property
def
logging_dir
(
self
)
->
str
:
return
self
.
_logging_dir
@
classmethod
def
create_optimizer
(
cls
,
optimizer_config
:
OptimizationConfig
,
runtime_config
:
Optional
[
RuntimeConfig
]
=
None
):
"""Creates an TF optimizer from configurations.
Args:
optimizer_config: the parameters of the Optimization settings.
runtime_config: the parameters of the runtime.
Returns:
A tf.optimizers.Optimizer object.
"""
opt_factory
=
optimization
.
OptimizerFactory
(
optimizer_config
)
optimizer
=
opt_factory
.
build_optimizer
(
opt_factory
.
build_learning_rate
())
# Configuring optimizer when loss_scale is set in runtime config. This helps
# avoiding overflow/underflow for float16 computations.
if
runtime_config
:
optimizer
=
performance
.
configure_optimizer
(
optimizer
,
use_float16
=
runtime_config
.
mixed_precision_dtype
==
"float16"
,
loss_scale
=
runtime_config
.
loss_scale
)
return
optimizer
def
initialize
(
self
,
model
:
tf
.
keras
.
Model
):
"""[Optional] A callback function used as CheckpointManager's init_fn.
This function will be called when no checkpoint is found for the model.
If there is a checkpoint, the checkpoint will be loaded and this function
will not be called. You can use this callback function to load a pretrained
checkpoint, saved under a directory other than the model_dir.
Args:
model: The keras.Model built or used by this task.
"""
ckpt_dir_or_file
=
self
.
task_config
.
init_checkpoint
logging
.
info
(
"Trying to load pretrained checkpoint from %s"
,
ckpt_dir_or_file
)
if
tf
.
io
.
gfile
.
isdir
(
ckpt_dir_or_file
):
ckpt_dir_or_file
=
tf
.
train
.
latest_checkpoint
(
ckpt_dir_or_file
)
if
not
ckpt_dir_or_file
:
return
if
hasattr
(
model
,
"checkpoint_items"
):
checkpoint_items
=
model
.
checkpoint_items
else
:
checkpoint_items
=
dict
(
model
=
model
)
ckpt
=
tf
.
train
.
Checkpoint
(
**
checkpoint_items
)
status
=
ckpt
.
read
(
ckpt_dir_or_file
)
status
.
expect_partial
().
assert_existing_objects_matched
()
logging
.
info
(
"Finished loading pretrained checkpoint from %s"
,
ckpt_dir_or_file
)
def
build_model
(
self
)
->
tf
.
keras
.
Model
:
"""[Optional] Creates model architecture.
Returns:
A model instance.
"""
# pytype: disable=bad-return-type # typed-keras
@
abc
.
abstractmethod
def
build_inputs
(
self
,
params
,
input_context
:
Optional
[
tf
.
distribute
.
InputContext
]
=
None
):
"""Returns a dataset or a nested structure of dataset functions.
Dataset functions define per-host datasets with the per-replica batch size.
With distributed training, this method runs on remote hosts.
Args:
params: hyperparams to create input pipelines, which can be any of
dataclass, ConfigDict, namedtuple, etc.
input_context: optional distribution input pipeline context.
Returns:
A nested structure of per-replica input functions.
"""
def
build_losses
(
self
,
labels
,
model_outputs
,
aux_losses
=
None
)
->
tf
.
Tensor
:
"""Standard interface to compute losses.
Args:
labels: optional label tensors.
model_outputs: a nested structure of output tensors.
aux_losses: auxiliary loss tensors, i.e. `losses` in keras.Model.
Returns:
The total loss tensor.
"""
del
model_outputs
,
labels
if
aux_losses
is
None
:
losses
=
[
tf
.
constant
(
0.0
,
dtype
=
tf
.
float32
)]
else
:
losses
=
aux_losses
total_loss
=
tf
.
add_n
(
losses
)
return
total_loss
def
build_metrics
(
self
,
training
:
bool
=
True
):
"""Gets streaming metrics for training/validation."""
del
training
return
[]
def
process_metrics
(
self
,
metrics
,
labels
,
model_outputs
,
**
kwargs
):
"""Process and update metrics.
Called when using custom training loop API.
Args:
metrics: a nested structure of metrics objects. The return of function
self.build_metrics.
labels: a tensor or a nested structure of tensors.
model_outputs: a tensor or a nested structure of tensors. For example,
output of the keras model built by self.build_model.
**kwargs: other args.
"""
for
metric
in
metrics
:
metric
.
update_state
(
labels
,
model_outputs
)
def
process_compiled_metrics
(
self
,
compiled_metrics
,
labels
,
model_outputs
):
"""Process and update compiled_metrics.
call when using compile/fit API.
Args:
compiled_metrics: the compiled metrics (model.compiled_metrics).
labels: a tensor or a nested structure of tensors.
model_outputs: a tensor or a nested structure of tensors. For example,
output of the keras model built by self.build_model.
"""
compiled_metrics
.
update_state
(
labels
,
model_outputs
)
def
train_step
(
self
,
inputs
,
model
:
tf
.
keras
.
Model
,
optimizer
:
tf
.
keras
.
optimizers
.
Optimizer
,
metrics
=
None
):
"""Does forward and backward.
With distribution strategies, this method runs on devices.
Args:
inputs: a dictionary of input tensors.
model: the model, forward pass definition.
optimizer: the optimizer for this training step.
metrics: a nested structure of metrics objects.
Returns:
A dictionary of logs.
"""
if
isinstance
(
inputs
,
tuple
)
and
len
(
inputs
)
==
2
:
features
,
labels
=
inputs
else
:
features
,
labels
=
inputs
,
inputs
with
tf
.
GradientTape
()
as
tape
:
outputs
=
model
(
features
,
training
=
True
)
# Computes per-replica loss.
if
model
.
compiled_loss
:
loss
=
model
.
compiled_loss
(
labels
,
outputs
,
regularization_losses
=
model
.
losses
)
loss
+=
self
.
build_losses
(
labels
=
labels
,
model_outputs
=
outputs
,
aux_losses
=
None
)
else
:
loss
=
self
.
build_losses
(
labels
=
labels
,
model_outputs
=
outputs
,
aux_losses
=
model
.
losses
)
# Scales loss as the default gradients allreduce performs sum inside the
# optimizer.
scaled_loss
=
loss
/
tf
.
distribute
.
get_strategy
().
num_replicas_in_sync
# For mixed precision, when a LossScaleOptimizer is used, the loss is
# scaled to avoid numeric underflow.
if
isinstance
(
optimizer
,
tf
.
keras
.
mixed_precision
.
LossScaleOptimizer
):
scaled_loss
=
optimizer
.
get_scaled_loss
(
scaled_loss
)
tvars
=
model
.
trainable_variables
grads
=
tape
.
gradient
(
scaled_loss
,
tvars
)
if
isinstance
(
optimizer
,
tf
.
keras
.
mixed_precision
.
LossScaleOptimizer
):
grads
=
optimizer
.
get_unscaled_gradients
(
grads
)
optimizer
.
apply_gradients
(
list
(
zip
(
grads
,
tvars
)))
logs
=
{
self
.
loss
:
loss
}
if
metrics
:
self
.
process_metrics
(
metrics
,
labels
,
outputs
)
if
model
.
compiled_metrics
:
self
.
process_compiled_metrics
(
model
.
compiled_metrics
,
labels
,
outputs
)
logs
.
update
({
m
.
name
:
m
.
result
()
for
m
in
metrics
or
[]})
logs
.
update
({
m
.
name
:
m
.
result
()
for
m
in
model
.
metrics
})
return
logs
def
validation_step
(
self
,
inputs
,
model
:
tf
.
keras
.
Model
,
metrics
=
None
):
"""Validation step.
With distribution strategies, this method runs on devices.
Args:
inputs: a dictionary of input tensors.
model: the keras.Model.
metrics: a nested structure of metrics objects.
Returns:
A dictionary of logs.
"""
if
isinstance
(
inputs
,
tuple
)
and
len
(
inputs
)
==
2
:
features
,
labels
=
inputs
else
:
features
,
labels
=
inputs
,
inputs
outputs
=
self
.
inference_step
(
features
,
model
)
loss
=
self
.
build_losses
(
labels
=
labels
,
model_outputs
=
outputs
,
aux_losses
=
model
.
losses
)
logs
=
{
self
.
loss
:
loss
}
if
metrics
:
self
.
process_metrics
(
metrics
,
labels
,
outputs
)
if
model
.
compiled_metrics
:
self
.
process_compiled_metrics
(
model
.
compiled_metrics
,
labels
,
outputs
)
logs
.
update
({
m
.
name
:
m
.
result
()
for
m
in
metrics
or
[]})
logs
.
update
({
m
.
name
:
m
.
result
()
for
m
in
model
.
metrics
})
return
logs
def
inference_step
(
self
,
inputs
,
model
:
tf
.
keras
.
Model
):
"""Performs the forward step.
With distribution strategies, this method runs on devices.
Args:
inputs: a dictionary of input tensors.
model: the keras.Model.
Returns:
Model outputs.
"""
return
model
(
inputs
,
training
=
False
)
def
aggregate_logs
(
self
,
state
,
step_logs
):
"""Optional aggregation over logs returned from a validation step.
Given step_logs from a validation step, this function aggregates the logs
after each eval_step() (see eval_reduce() function in
official/core/base_trainer.py). It runs on CPU and can be used to aggregate
metrics during validation, when there are too many metrics that cannot fit
into TPU memory. Note that this may increase latency due to data transfer
between TPU and CPU. Also, the step output from a validation step may be a
tuple with elements from replicas, and a concatenation of the elements is
needed in such case.
Args:
state: The current state of training, for example, it can be a sequence of
metrics.
step_logs: Logs from a validation step. Can be a dictionary.
"""
pass
def
reduce_aggregated_logs
(
self
,
aggregated_logs
,
global_step
:
Optional
[
tf
.
Tensor
]
=
None
):
"""Optional reduce of aggregated logs over validation steps.
This function reduces aggregated logs at the end of validation, and can be
used to compute the final metrics. It runs on CPU and in each eval_end() in
base trainer (see eval_end() function in official/core/base_trainer.py).
Args:
aggregated_logs: Aggregated logs over multiple validation steps.
global_step: An optional variable of global step.
Returns:
A dictionary of reduced results.
"""
return
{}
TensorFlow2x/ComputeVision/Classification/models-master/official/core/base_trainer.py
0 → 100644
View file @
a32ffa95
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Standard Trainer implementation.
The base trainer implements the Orbit `StandardTrainable` and
`StandardEvaluable` interfaces. Trainers inside this project should be
interchangable and independent on model architectures and tasks.
"""
import
functools
from
typing
import
Union
,
Optional
from
absl
import
logging
import
gin
import
orbit
import
tensorflow
as
tf
from
official.core
import
base_task
from
official.core
import
config_definitions
from
official.modeling
import
optimization
ExperimentConfig
=
config_definitions
.
ExperimentConfig
TrainerConfig
=
config_definitions
.
TrainerConfig
class
Recovery
:
"""Built-in model blowup recovery module.
Checks the loss value by the given threshold. If applicable, recover the
model by reading the checkpoint on disk.
"""
def
__init__
(
self
,
loss_upper_bound
:
float
,
checkpoint_manager
:
tf
.
train
.
CheckpointManager
,
recovery_begin_steps
:
int
=
0
,
recovery_max_trials
:
int
=
3
):
self
.
recover_counter
=
0
self
.
recovery_begin_steps
=
recovery_begin_steps
self
.
recovery_max_trials
=
recovery_max_trials
self
.
loss_upper_bound
=
loss_upper_bound
self
.
checkpoint_manager
=
checkpoint_manager
def
should_recover
(
self
,
loss_value
,
global_step
):
if
tf
.
math
.
is_nan
(
loss_value
):
return
True
if
(
global_step
>=
self
.
recovery_begin_steps
and
loss_value
>
self
.
loss_upper_bound
):
return
True
return
False
def
maybe_recover
(
self
,
loss_value
,
global_step
):
"""Conditionally recovers the training by triggering checkpoint restoration.
Args:
loss_value: the loss value as a float.
global_step: the number of global training steps.
Raises:
RuntimeError: when recovery happens more than the max number of trials,
the job should crash.
"""
if
not
self
.
should_recover
(
loss_value
,
global_step
):
return
self
.
recover_counter
+=
1
if
self
.
recover_counter
>
self
.
recovery_max_trials
:
raise
RuntimeError
(
"The loss value is NaN or out of range after training loop and "
f
"this happens
{
self
.
recover_counter
}
times."
)
# Loads the previous good checkpoint.
checkpoint_path
=
self
.
checkpoint_manager
.
restore_or_initialize
()
logging
.
warning
(
"Recovering the model from checkpoint: %s. The loss value becomes "
"%f at step %d."
,
checkpoint_path
,
loss_value
,
global_step
)
class
_AsyncTrainer
(
orbit
.
StandardTrainer
,
orbit
.
StandardEvaluator
):
"""Trainer class for both sync and async Strategy."""
def
init_async
(
self
):
"""Initializes the Async Trainer base class."""
assert
isinstance
(
self
.
_strategy
,
tf
.
distribute
.
Strategy
)
self
.
_is_async
=
isinstance
(
self
.
_strategy
,
tf
.
distribute
.
experimental
.
ParameterServerStrategy
)
self
.
_coordinator
=
None
if
self
.
_is_async
:
self
.
_coordinator
=
(
tf
.
distribute
.
experimental
.
coordinator
.
ClusterCoordinator
(
self
.
_strategy
))
def
join
(
self
):
"""Join all async steps. Only useful in aysnc training."""
if
getattr
(
self
,
"_is_async"
,
False
):
self
.
_coordinator
.
join
()
def
create_train_loop_fn
(
self
):
"""Creates a eval loop from the given step function and options."""
train_loop_fn
=
super
().
create_train_loop_fn
()
if
getattr
(
self
,
"_is_async"
,
False
):
def
_async_loop_fn
(
iterator
,
num_steps
):
self
.
_coordinator
.
schedule
(
train_loop_fn
,
args
=
(
iterator
,
num_steps
))
return
_async_loop_fn
else
:
return
train_loop_fn
def
create_eval_loop_fn
(
self
,
has_state
:
bool
):
"""Creates a training loop from the given step function and options."""
eval_loop_fn
=
super
().
create_eval_loop_fn
(
has_state
)
if
getattr
(
self
,
"_is_async"
,
False
):
if
has_state
:
raise
ValueError
(
"Stateful eval loop is not supported in async training."
)
def
_async_loop_fn
(
iterator
,
num_steps
,
state
=
None
,
reduce_fn
=
None
):
assert
state
is
None
assert
reduce_fn
is
None
self
.
_coordinator
.
schedule
(
eval_loop_fn
,
args
=
(
iterator
,
num_steps
))
return
_async_loop_fn
else
:
return
eval_loop_fn
def
distribute_dataset
(
self
,
dataset_or_fn
,
*
args
,
**
kwargs
):
"""A utility function to help create a `tf.distribute.DistributedDataset`.
Args:
dataset_or_fn: A instance of `tf.data.Dataset`, or a "dataset function"
returning a `tf.data.Dataset`. If it is a function, it may optionally
have an argument named `input_context` which will be passed a
`tf.distribute.InputContext` instance.
*args: Any positional arguments to pass through to `dataset_or_fn`.
**kwargs: Any keyword arguments to pass through to `dataset_or_fn`.
Returns:
A distributed Dataset.
"""
if
getattr
(
self
,
"_is_async"
,
False
):
per_worker_dataset_fn
=
functools
.
partial
(
orbit
.
utils
.
make_distributed_dataset
,
self
.
_strategy
,
dataset_or_fn
,
*
args
,
**
kwargs
)
per_worker_dataset_fn
=
tf
.
function
(
per_worker_dataset_fn
)
return
self
.
_coordinator
.
create_per_worker_dataset
(
per_worker_dataset_fn
)
else
:
return
orbit
.
utils
.
make_distributed_dataset
(
self
.
_strategy
,
dataset_or_fn
,
*
args
,
**
kwargs
)
def
get_runtime_options
(
config
:
ExperimentConfig
):
"""Get tf.distribute.RunOptions from config."""
xla_options
=
{}
if
config
.
runtime
.
tpu_enable_xla_dynamic_padder
is
not
None
:
xla_options
[
"enable_xla_dynamic_padder"
]
=
(
config
.
runtime
.
tpu_enable_xla_dynamic_padder
)
return
tf
.
distribute
.
RunOptions
(
experimental_xla_options
=
tf
.
tpu
.
XLAOptions
(
**
xla_options
))
@
gin
.
configurable
class
Trainer
(
_AsyncTrainer
):
"""Implements the common trainer shared for TensorFlow models."""
# pylint: disable=super-init-not-called
def
__init__
(
self
,
config
:
ExperimentConfig
,
task
:
base_task
.
Task
,
model
:
tf
.
keras
.
Model
,
optimizer
:
tf
.
optimizers
.
Optimizer
,
train
:
bool
=
True
,
evaluate
:
bool
=
True
,
train_dataset
:
Optional
[
Union
[
tf
.
data
.
Dataset
,
tf
.
distribute
.
DistributedDataset
]]
=
None
,
validation_dataset
:
Optional
[
Union
[
tf
.
data
.
Dataset
,
tf
.
distribute
.
DistributedDataset
]]
=
None
,
checkpoint_exporter
=
None
):
"""Initialize common trainer for TensorFlow models.
Args:
config: An `ExperimentConfig` instance specifying experiment config.
task: A base_task.Task instance.
model: The model instance, e.g. a tf.keras.Model instance.
optimizer: tf.optimizers.Optimizer instance.
train: bool, whether or not this trainer will be used for training.
default to True.
evaluate: bool, whether or not this trainer will be used for evaluation.
default to True.
train_dataset: a dataset object created for training. With tf.distribute,
it needs to be a `DistributedDataset`.
validation_dataset: a dataset object created for evaluation. With
tf.distribute, it needs to be a `DistributedDataset`. The evaluator will
create a dataset iterator for each eval round, so the dataset does not
need to repeat.
checkpoint_exporter: an object that has the `maybe_export_checkpoint`
interface.
"""
# Gets the current distribution strategy. If not inside any strategy scope,
# it gets a single-replica no-op strategy.
self
.
_strategy
=
tf
.
distribute
.
get_strategy
()
self
.
_validate_params
(
config
,
check_train_data
=
train_dataset
is
None
,
check_validation_data
=
validation_dataset
is
None
)
self
.
_config
=
config
self
.
_task
=
task
self
.
_model
=
model
self
.
_optimizer
=
optimizer
self
.
_checkpoint_exporter
=
checkpoint_exporter
self
.
_recovery
=
None
# Runtime options are only applied to train_step.
# We use default for eval_step.
self
.
_runtime_options
=
get_runtime_options
(
config
)
# Creates a shadow copy of the weights to store weights moving average.
if
isinstance
(
self
.
_optimizer
,
optimization
.
ExponentialMovingAverage
)
and
not
self
.
_optimizer
.
has_shadow_copy
:
self
.
_optimizer
.
shadow_copy
(
self
.
_model
)
# global_step increases by 1 after each training iteration.
# We should have global_step.numpy() == self.optimizer.iterations.numpy()
# when there is only 1 optimizer.
self
.
_global_step
=
orbit
.
utils
.
create_global_step
()
if
hasattr
(
self
.
model
,
"checkpoint_items"
):
checkpoint_items
=
self
.
model
.
checkpoint_items
else
:
checkpoint_items
=
{}
self
.
_checkpoint
=
tf
.
train
.
Checkpoint
(
global_step
=
self
.
global_step
,
model
=
self
.
model
,
optimizer
=
self
.
optimizer
,
**
checkpoint_items
)
self
.
_train_loss
=
tf
.
keras
.
metrics
.
Mean
(
"training_loss"
,
dtype
=
tf
.
float32
)
self
.
_validation_loss
=
tf
.
keras
.
metrics
.
Mean
(
"validation_loss"
,
dtype
=
tf
.
float32
)
model_metrics
=
model
.
metrics
if
hasattr
(
model
,
"metrics"
)
else
[]
self
.
_train_metrics
=
self
.
task
.
build_metrics
(
training
=
True
)
+
model_metrics
self
.
_validation_metrics
=
self
.
task
.
build_metrics
(
training
=
False
)
+
model_metrics
self
.
init_async
()
if
train
:
train_dataset
=
train_dataset
or
self
.
distribute_dataset
(
self
.
task
.
build_inputs
,
self
.
config
.
task
.
train_data
)
orbit
.
StandardTrainer
.
__init__
(
self
,
train_dataset
,
options
=
orbit
.
StandardTrainerOptions
(
use_tf_while_loop
=
config
.
trainer
.
train_tf_while_loop
,
use_tf_function
=
config
.
trainer
.
train_tf_function
,
use_tpu_summary_optimization
=
config
.
trainer
.
allow_tpu_summary
))
if
evaluate
:
validation_dataset
=
validation_dataset
or
self
.
distribute_dataset
(
self
.
task
.
build_inputs
,
self
.
config
.
task
.
validation_data
)
orbit
.
StandardEvaluator
.
__init__
(
self
,
validation_dataset
,
options
=
orbit
.
StandardEvaluatorOptions
(
use_tf_function
=
config
.
trainer
.
eval_tf_function
,
use_tf_while_loop
=
config
.
trainer
.
eval_tf_while_loop
))
def
_validate_params
(
self
,
config
,
check_train_data
=
True
,
check_validation_data
=
True
):
r
"""Validates if the configuration object passed to the Trainer.
The experiment configuration should be structured as:
\trainer
\task
\train_data
\validation_data
Args:
config: a namedtuple, dataclass, ConfigDict, etc.
check_train_data: whether to check task.train_data field.
check_validation_data: whether to check task.validation_data field.
"""
if
not
hasattr
(
config
,
"trainer"
):
raise
AttributeError
(
"The trainer requires the configuration contains an"
" attribute `trainer`."
)
if
not
hasattr
(
config
,
"task"
):
raise
AttributeError
(
"The trainer requires the configuration contains an"
" attribute `task`."
)
if
check_train_data
and
not
hasattr
(
config
.
task
,
"train_data"
):
raise
AttributeError
(
"The trainer requires the configuration contains an"
" attribute `task.train_data`."
)
if
check_validation_data
and
not
hasattr
(
config
.
task
,
"validation_data"
):
raise
AttributeError
(
"The trainer requires the configuration contains an"
" attribute `task.validation_data`."
)
@
property
def
strategy
(
self
):
return
self
.
_strategy
@
property
def
config
(
self
):
return
self
.
_config
@
property
def
task
(
self
):
return
self
.
_task
@
property
def
model
(
self
):
return
self
.
_model
@
property
def
optimizer
(
self
):
if
hasattr
(
self
,
"_optimizer"
):
return
self
.
_optimizer
else
:
return
None
@
property
def
global_step
(
self
):
return
self
.
_global_step
@
property
def
train_loss
(
self
):
"""Accesses the training loss metric object."""
return
self
.
_train_loss
@
property
def
validation_loss
(
self
):
"""Accesses the validation loss metric object."""
return
self
.
_validation_loss
@
property
def
train_metrics
(
self
):
"""Accesses all training metric objects."""
return
self
.
_train_metrics
@
property
def
validation_metrics
(
self
):
"""Accesses all validation metric metric objects."""
return
self
.
_validation_metrics
def
initialize
(
self
):
"""A callback function.
This function will be called when no checkpoint found for the model.
If there is a checkpoint, the checkpoint will be loaded and this function
will not be called. Tasks may use this callback function to load a
pretrained checkpoint, saved under a directory other than the model_dir.
"""
self
.
task
.
initialize
(
self
.
model
)
@
property
def
checkpoint
(
self
):
"""Accesses the training checkpoint."""
return
self
.
_checkpoint
# TODO(yejiayu): Remove this once all deps are fixed.
def
add_recovery
(
self
,
params
:
TrainerConfig
,
checkpoint_manager
:
tf
.
train
.
CheckpointManager
):
if
params
.
recovery_max_trials
>=
0
:
self
.
_recovery
=
Recovery
(
loss_upper_bound
=
params
.
loss_upper_bound
,
recovery_begin_steps
=
params
.
recovery_begin_steps
,
recovery_max_trials
=
params
.
recovery_max_trials
,
checkpoint_manager
=
checkpoint_manager
)
def
train_loop_end
(
self
):
"""See base class."""
self
.
join
()
logs
=
{}
for
metric
in
self
.
train_metrics
+
[
self
.
train_loss
]:
logs
[
metric
.
name
]
=
metric
.
result
()
metric
.
reset_states
()
if
callable
(
self
.
optimizer
.
learning_rate
):
# Maybe a self-implemented optimizer does not have `optimizer.iterations`.
# So just to be safe here.
if
hasattr
(
self
.
optimizer
,
"iterations"
):
logs
[
"learning_rate"
]
=
self
.
optimizer
.
learning_rate
(
self
.
optimizer
.
iterations
)
else
:
logs
[
"learning_rate"
]
=
self
.
optimizer
.
learning_rate
(
self
.
global_step
)
else
:
logs
[
"learning_rate"
]
=
self
.
optimizer
.
learning_rate
return
logs
def
train_step
(
self
,
iterator
):
"""See base class."""
def
step_fn
(
inputs
):
if
self
.
config
.
runtime
.
enable_xla
and
(
self
.
config
.
runtime
.
num_gpus
>
0
):
task_train_step
=
tf
.
function
(
self
.
task
.
train_step
,
jit_compile
=
True
)
else
:
task_train_step
=
self
.
task
.
train_step
logs
=
task_train_step
(
inputs
,
model
=
self
.
model
,
optimizer
=
self
.
optimizer
,
metrics
=
self
.
train_metrics
)
self
.
_train_loss
.
update_state
(
logs
[
self
.
task
.
loss
])
self
.
global_step
.
assign_add
(
1
)
self
.
strategy
.
run
(
step_fn
,
args
=
(
next
(
iterator
),),
options
=
self
.
_runtime_options
)
def
eval_begin
(
self
):
"""Sets up metrics."""
for
metric
in
self
.
validation_metrics
+
[
self
.
validation_loss
]:
metric
.
reset_states
()
# Swaps weights to test on weights moving average.
if
self
.
optimizer
and
isinstance
(
self
.
optimizer
,
optimization
.
ExponentialMovingAverage
):
self
.
optimizer
.
swap_weights
()
def
eval_step
(
self
,
iterator
):
"""See base class."""
def
step_fn
(
inputs
):
logs
=
self
.
task
.
validation_step
(
inputs
,
model
=
self
.
model
,
metrics
=
self
.
validation_metrics
)
if
self
.
task
.
loss
in
logs
:
self
.
_validation_loss
.
update_state
(
logs
[
self
.
task
.
loss
])
return
logs
distributed_outputs
=
self
.
strategy
.
run
(
step_fn
,
args
=
(
next
(
iterator
),))
return
tf
.
nest
.
map_structure
(
self
.
strategy
.
experimental_local_results
,
distributed_outputs
)
def
eval_end
(
self
,
aggregated_logs
=
None
):
"""Processes evaluation results."""
self
.
join
()
logs
=
{}
for
metric
in
self
.
validation_metrics
:
logs
[
metric
.
name
]
=
metric
.
result
()
if
self
.
validation_loss
.
count
.
numpy
()
!=
0
:
logs
[
self
.
validation_loss
.
name
]
=
self
.
validation_loss
.
result
()
else
:
# `self.validation_loss` metric was not updated, because the validation
# loss was not returned from the task's `validation_step` method.
logging
.
info
(
"The task did not report validation loss."
)
if
aggregated_logs
:
metrics
=
self
.
task
.
reduce_aggregated_logs
(
aggregated_logs
,
global_step
=
self
.
global_step
)
logs
.
update
(
metrics
)
if
self
.
_checkpoint_exporter
:
self
.
_checkpoint_exporter
.
maybe_export_checkpoint
(
self
.
checkpoint
,
logs
,
self
.
global_step
.
numpy
())
metric_name
=
self
.
config
.
trainer
.
best_checkpoint_eval_metric
logs
[
"best_"
+
metric_name
]
=
self
.
_checkpoint_exporter
.
best_ckpt_logs
[
metric_name
]
# Swaps back weights after testing when EMA is used.
# This happens after best checkpoint export so that average weights used for
# eval are exported instead of regular weights.
if
self
.
optimizer
and
isinstance
(
self
.
optimizer
,
optimization
.
ExponentialMovingAverage
):
self
.
optimizer
.
swap_weights
()
return
logs
def
eval_reduce
(
self
,
state
=
None
,
step_outputs
=
None
):
return
self
.
task
.
aggregate_logs
(
state
,
step_outputs
)
TensorFlow2x/ComputeVision/Classification/models-master/official/core/base_trainer_test.py
0 → 100644
View file @
a32ffa95
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for tensorflow_models.core.trainers.trainer."""
# pylint: disable=g-direct-tensorflow-import
import
gc
import
multiprocessing
import
os
import
sys
from
absl.testing
import
parameterized
import
orbit
import
portpicker
import
tensorflow
as
tf
from
tensorflow.python.distribute
import
combinations
from
tensorflow.python.distribute
import
strategy_combinations
from
official.core
import
base_trainer
as
trainer_lib
from
official.core
import
config_definitions
as
cfg
from
official.core
import
train_lib
from
official.utils.testing
import
mock_task
TPU_TEST
=
'test_tpu'
in
sys
.
argv
[
0
]
GPU_TEST
=
'test_gpu'
in
sys
.
argv
[
0
]
def
all_strategy_combinations
():
return
combinations
.
combine
(
distribution
=
[
strategy_combinations
.
default_strategy
,
strategy_combinations
.
cloud_tpu_strategy
,
strategy_combinations
.
one_device_strategy_gpu
,
],)
def
create_in_process_cluster
(
num_workers
,
num_ps
):
"""Creates and starts local servers and returns the cluster_resolver."""
worker_ports
=
[
portpicker
.
pick_unused_port
()
for
_
in
range
(
num_workers
)]
ps_ports
=
[
portpicker
.
pick_unused_port
()
for
_
in
range
(
num_ps
)]
cluster_dict
=
{}
cluster_dict
[
'worker'
]
=
[
'localhost:%s'
%
port
for
port
in
worker_ports
]
if
num_ps
>
0
:
cluster_dict
[
'ps'
]
=
[
'localhost:%s'
%
port
for
port
in
ps_ports
]
cluster_spec
=
tf
.
train
.
ClusterSpec
(
cluster_dict
)
# Workers need some inter_ops threads to work properly.
worker_config
=
tf
.
compat
.
v1
.
ConfigProto
()
if
multiprocessing
.
cpu_count
()
<
num_workers
+
1
:
worker_config
.
inter_op_parallelism_threads
=
num_workers
+
1
for
i
in
range
(
num_workers
):
tf
.
distribute
.
Server
(
cluster_spec
,
job_name
=
'worker'
,
task_index
=
i
,
config
=
worker_config
,
protocol
=
'grpc'
)
for
i
in
range
(
num_ps
):
tf
.
distribute
.
Server
(
cluster_spec
,
job_name
=
'ps'
,
task_index
=
i
,
protocol
=
'grpc'
)
cluster_resolver
=
tf
.
distribute
.
cluster_resolver
.
SimpleClusterResolver
(
cluster_spec
,
rpc_layer
=
'grpc'
)
return
cluster_resolver
def
dataset_fn
(
input_context
=
None
):
del
input_context
def
dummy_data
(
_
):
return
tf
.
zeros
((
1
,
1
),
dtype
=
tf
.
float32
)
dataset
=
tf
.
data
.
Dataset
.
range
(
1
)
dataset
=
dataset
.
repeat
()
dataset
=
dataset
.
map
(
dummy_data
,
num_parallel_calls
=
tf
.
data
.
experimental
.
AUTOTUNE
)
return
dataset
class
MockAsyncTrainer
(
trainer_lib
.
_AsyncTrainer
):
"""Mock AsyncTrainer to test the _AsyncTrainer class."""
def
__init__
(
self
):
self
.
_strategy
=
tf
.
distribute
.
get_strategy
()
self
.
init_async
()
self
.
global_step
=
tf
.
Variable
(
0
,
dtype
=
tf
.
int64
,
name
=
'global_step'
,
trainable
=
False
,
aggregation
=
tf
.
VariableAggregation
.
ONLY_FIRST_REPLICA
)
self
.
eval_global_step
=
tf
.
Variable
(
0
,
dtype
=
tf
.
int64
,
name
=
'eval_global_step'
,
trainable
=
False
,
aggregation
=
tf
.
VariableAggregation
.
ONLY_FIRST_REPLICA
)
train_dataset
=
self
.
distribute_dataset
(
dataset_fn
)
orbit
.
StandardTrainer
.
__init__
(
self
,
train_dataset
,
options
=
orbit
.
StandardTrainerOptions
())
validation_dataset
=
self
.
distribute_dataset
(
dataset_fn
)
orbit
.
StandardEvaluator
.
__init__
(
self
,
validation_dataset
,
options
=
orbit
.
StandardEvaluatorOptions
(
use_tf_while_loop
=
True
))
def
train_loop_begin
(
self
):
self
.
global_step
.
assign
(
0
)
def
train_step
(
self
,
iterator
):
def
replica_step
(
_
):
self
.
global_step
.
assign_add
(
1
)
self
.
_strategy
.
run
(
replica_step
,
args
=
(
next
(
iterator
),))
def
train_loop_end
(
self
):
self
.
join
()
return
self
.
global_step
.
numpy
()
def
eval_begin
(
self
):
self
.
eval_global_step
.
assign
(
0
)
def
eval_step
(
self
,
iterator
):
def
replica_step
(
_
):
self
.
eval_global_step
.
assign_add
(
1
)
self
.
_strategy
.
run
(
replica_step
,
args
=
(
next
(
iterator
),))
def
eval_end
(
self
):
self
.
join
()
return
self
.
eval_global_step
.
numpy
()
class
RecoveryTest
(
tf
.
test
.
TestCase
):
def
test_recovery_module
(
self
):
ckpt
=
tf
.
train
.
Checkpoint
(
v
=
tf
.
Variable
(
1
,
dtype
=
tf
.
int32
))
model_dir
=
self
.
get_temp_dir
()
manager
=
tf
.
train
.
CheckpointManager
(
ckpt
,
model_dir
,
max_to_keep
=
1
)
recovery_module
=
trainer_lib
.
Recovery
(
loss_upper_bound
=
1.0
,
checkpoint_manager
=
manager
,
recovery_begin_steps
=
1
,
recovery_max_trials
=
1
)
self
.
assertFalse
(
recovery_module
.
should_recover
(
1.1
,
0
))
self
.
assertFalse
(
recovery_module
.
should_recover
(
0.1
,
1
))
self
.
assertTrue
(
recovery_module
.
should_recover
(
1.1
,
2
))
# First triggers the recovery once.
recovery_module
.
maybe_recover
(
1.1
,
10
)
# Second time, it raises.
with
self
.
assertRaisesRegex
(
RuntimeError
,
'The loss value is NaN .*'
):
recovery_module
.
maybe_recover
(
1.1
,
10
)
class
TrainerTest
(
tf
.
test
.
TestCase
,
parameterized
.
TestCase
):
def
setUp
(
self
):
super
().
setUp
()
self
.
_config
=
cfg
.
ExperimentConfig
(
trainer
=
cfg
.
TrainerConfig
(
optimizer_config
=
cfg
.
OptimizationConfig
({
'optimizer'
:
{
'type'
:
'sgd'
},
'learning_rate'
:
{
'type'
:
'constant'
}
})))
def
tearDown
(
self
):
gc
.
collect
()
# This will only contain uncollectable garbage, i.e. reference cycles
# involving objects with __del__ defined.
self
.
assertEmpty
(
gc
.
garbage
)
super
().
tearDown
()
def
create_test_trainer
(
self
,
config
,
model_dir
=
None
,
task
=
None
):
task
=
task
or
mock_task
.
MockTask
(
config
.
task
,
logging_dir
=
model_dir
)
ckpt_exporter
=
train_lib
.
maybe_create_best_ckpt_exporter
(
config
,
model_dir
)
trainer
=
trainer_lib
.
Trainer
(
config
,
task
,
model
=
task
.
build_model
(),
optimizer
=
task
.
create_optimizer
(
config
.
trainer
.
optimizer_config
,
config
.
runtime
),
checkpoint_exporter
=
ckpt_exporter
)
return
trainer
@
combinations
.
generate
(
all_strategy_combinations
())
def
test_trainer_train
(
self
,
distribution
):
with
distribution
.
scope
():
trainer
=
self
.
create_test_trainer
(
self
.
_config
)
logs
=
trainer
.
train
(
tf
.
convert_to_tensor
(
5
,
dtype
=
tf
.
int32
))
self
.
assertIn
(
'training_loss'
,
logs
)
self
.
assertIn
(
'learning_rate'
,
logs
)
@
combinations
.
generate
(
all_strategy_combinations
())
def
test_trainer_passing_datasets
(
self
,
distribution
):
with
distribution
.
scope
():
task
=
mock_task
.
MockTask
(
self
.
_config
)
train_dataset
=
orbit
.
utils
.
make_distributed_dataset
(
distribution
,
task
.
build_inputs
,
self
.
_config
.
task
.
train_data
)
validation_dataset
=
orbit
.
utils
.
make_distributed_dataset
(
distribution
,
task
.
build_inputs
,
self
.
_config
.
task
.
validation_data
)
self
.
_config
.
task
.
train_data
=
None
self
.
_config
.
task
.
validation_data
=
None
trainer
=
trainer_lib
.
Trainer
(
self
.
_config
,
task
,
model
=
task
.
build_model
(),
optimizer
=
task
.
create_optimizer
(
self
.
_config
.
trainer
.
optimizer_config
,
self
.
_config
.
runtime
),
train_dataset
=
train_dataset
,
validation_dataset
=
validation_dataset
)
logs
=
trainer
.
train
(
tf
.
convert_to_tensor
(
5
,
dtype
=
tf
.
int32
))
self
.
assertIn
(
'training_loss'
,
logs
)
self
.
assertIn
(
'learning_rate'
,
logs
)
logs
=
trainer
.
evaluate
(
tf
.
convert_to_tensor
(
5
,
dtype
=
tf
.
int32
))
self
.
assertIn
(
'validation_loss'
,
logs
)
def
test_base_async_trainer
(
self
):
if
TPU_TEST
or
GPU_TEST
:
self
.
skipTest
(
'Aysnc training is not available on GPU/GPU.'
)
num_workers
=
3
num_ps
=
2
cluster_resolver
=
create_in_process_cluster
(
num_workers
,
num_ps
)
distribution
=
tf
.
distribute
.
experimental
.
ParameterServerStrategy
(
cluster_resolver
)
with
distribution
.
scope
():
trainer
=
MockAsyncTrainer
()
trainer
.
init_async
()
self
.
assertIsInstance
(
trainer
.
_coordinator
,
tf
.
distribute
.
experimental
.
coordinator
.
ClusterCoordinator
)
self
.
assertEqual
(
trainer
.
train
(
tf
.
constant
(
10
)),
10
)
self
.
assertEqual
(
trainer
.
evaluate
(
tf
.
constant
(
11
)),
11
)
def
test_async_trainer_train
(
self
):
if
TPU_TEST
or
GPU_TEST
:
self
.
skipTest
(
'Aysnc training is not available on GPU/TPU.'
)
num_workers
=
3
num_ps
=
2
cluster_resolver
=
create_in_process_cluster
(
num_workers
,
num_ps
)
distribution
=
tf
.
distribute
.
experimental
.
ParameterServerStrategy
(
cluster_resolver
)
with
distribution
.
scope
():
config
=
cfg
.
ExperimentConfig
(
**
self
.
_config
.
as_dict
())
config
.
trainer
.
eval_tf_while_loop
=
True
trainer
=
self
.
create_test_trainer
(
config
)
logs
=
trainer
.
train
(
tf
.
convert_to_tensor
(
5
,
dtype
=
tf
.
int32
))
self
.
assertIn
(
'training_loss'
,
logs
)
self
.
assertIn
(
'learning_rate'
,
logs
)
def
test_async_trainer_validate
(
self
):
if
TPU_TEST
or
GPU_TEST
:
self
.
skipTest
(
'Aysnc training is not available on GPU/GPU.'
)
num_workers
=
3
num_ps
=
2
cluster_resolver
=
create_in_process_cluster
(
num_workers
,
num_ps
)
distribution
=
tf
.
distribute
.
experimental
.
ParameterServerStrategy
(
cluster_resolver
)
with
distribution
.
scope
():
config
=
cfg
.
ExperimentConfig
(
**
self
.
_config
.
as_dict
())
config
.
trainer
.
eval_tf_while_loop
=
True
trainer
=
self
.
create_test_trainer
(
config
)
logs
=
trainer
.
evaluate
(
tf
.
convert_to_tensor
(
5
,
dtype
=
tf
.
int32
))
self
.
assertIn
(
'acc'
,
logs
)
self
.
assertIn
(
'validation_loss'
,
logs
)
@
combinations
.
generate
(
all_strategy_combinations
())
def
test_trainer_validate
(
self
,
distribution
):
with
distribution
.
scope
():
trainer
=
self
.
create_test_trainer
(
self
.
_config
)
logs
=
trainer
.
evaluate
(
tf
.
convert_to_tensor
(
5
,
dtype
=
tf
.
int32
))
self
.
assertEqual
(
logs
[
'counter'
],
5.
*
distribution
.
num_replicas_in_sync
)
self
.
assertIn
(
'validation_loss'
,
logs
)
@
combinations
.
generate
(
all_strategy_combinations
())
def
test_trainer_validate_without_loss
(
self
,
distribution
):
class
MockTaskWithoutValidationLoss
(
mock_task
.
MockTask
):
def
validation_step
(
self
,
inputs
,
model
,
metrics
=
None
):
# Disable validation loss.
logs
=
super
().
validation_step
(
inputs
,
model
)
del
logs
[
self
.
loss
]
return
logs
with
distribution
.
scope
():
task
=
MockTaskWithoutValidationLoss
()
trainer
=
self
.
create_test_trainer
(
self
.
_config
,
task
=
task
)
logs
=
trainer
.
evaluate
(
tf
.
convert_to_tensor
(
5
,
dtype
=
tf
.
int32
))
self
.
assertEqual
(
logs
[
'counter'
],
5.
*
distribution
.
num_replicas_in_sync
)
self
.
assertNotIn
(
'validation_loss'
,
logs
)
@
combinations
.
generate
(
combinations
.
combine
(
mixed_precision_dtype
=
[
'float32'
,
'bfloat16'
,
'float16'
],
loss_scale
=
[
None
,
'dynamic'
,
128
,
256
],
))
def
test_configure_optimizer
(
self
,
mixed_precision_dtype
,
loss_scale
):
config
=
cfg
.
ExperimentConfig
(
runtime
=
cfg
.
RuntimeConfig
(
mixed_precision_dtype
=
mixed_precision_dtype
,
loss_scale
=
loss_scale
),
trainer
=
cfg
.
TrainerConfig
(
optimizer_config
=
cfg
.
OptimizationConfig
({
'optimizer'
:
{
'type'
:
'sgd'
},
'learning_rate'
:
{
'type'
:
'constant'
},
})))
trainer
=
self
.
create_test_trainer
(
config
)
if
mixed_precision_dtype
==
'float16'
:
self
.
assertIsInstance
(
trainer
.
optimizer
,
tf
.
keras
.
mixed_precision
.
LossScaleOptimizer
)
if
loss_scale
in
(
None
,
'dynamic'
):
self
.
assertTrue
(
trainer
.
optimizer
.
dynamic
)
else
:
self
.
assertFalse
(
trainer
.
optimizer
.
dynamic
)
self
.
assertEqual
(
trainer
.
optimizer
.
initial_scale
,
loss_scale
)
else
:
self
.
assertIsInstance
(
trainer
.
optimizer
,
tf
.
keras
.
optimizers
.
SGD
)
metrics
=
trainer
.
train
(
tf
.
convert_to_tensor
(
5
,
dtype
=
tf
.
int32
))
self
.
assertIn
(
'training_loss'
,
metrics
)
def
test_export_best_ckpt
(
self
):
config
=
cfg
.
ExperimentConfig
(
trainer
=
cfg
.
TrainerConfig
(
best_checkpoint_export_subdir
=
'best_ckpt'
,
best_checkpoint_eval_metric
=
'acc'
,
optimizer_config
=
cfg
.
OptimizationConfig
({
'optimizer'
:
{
'type'
:
'sgd'
},
'learning_rate'
:
{
'type'
:
'constant'
}
})))
model_dir
=
self
.
get_temp_dir
()
trainer
=
self
.
create_test_trainer
(
config
,
model_dir
=
model_dir
)
trainer
.
train
(
tf
.
convert_to_tensor
(
1
,
dtype
=
tf
.
int32
))
trainer
.
evaluate
(
tf
.
convert_to_tensor
(
1
,
dtype
=
tf
.
int32
))
self
.
assertTrue
(
tf
.
io
.
gfile
.
exists
(
os
.
path
.
join
(
model_dir
,
'best_ckpt'
,
'info.json'
)))
def
test_model_with_compiled_loss
(
self
):
task
=
mock_task
.
MockTask
()
model
=
task
.
build_model
()
model
.
compile
(
loss
=
tf
.
keras
.
losses
.
CategoricalCrossentropy
())
trainer
=
trainer_lib
.
Trainer
(
self
.
_config
,
task
,
model
=
model
,
optimizer
=
task
.
create_optimizer
(
self
.
_config
.
trainer
.
optimizer_config
))
logs
=
trainer
.
train
(
tf
.
convert_to_tensor
(
5
,
dtype
=
tf
.
int32
))
self
.
assertIn
(
'training_loss'
,
logs
)
if
__name__
==
'__main__'
:
tf
.
test
.
main
()
TensorFlow2x/ComputeVision/Classification/models-master/official/core/config_definitions.py
0 → 100644
View file @
a32ffa95
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Common configuration settings."""
import
dataclasses
from
typing
import
Optional
,
Sequence
,
Union
from
official.modeling.hyperparams
import
base_config
from
official.modeling.optimization.configs
import
optimization_config
OptimizationConfig
=
optimization_config
.
OptimizationConfig
@
dataclasses
.
dataclass
class
DataConfig
(
base_config
.
Config
):
"""The base configuration for building datasets.
Attributes:
input_path: The path to the input. It can be either (1) a str indicating a
file path/pattern, or (2) a str indicating multiple file paths/patterns
separated by comma (e.g "a, b, c" or no spaces "a,b,c"), or (3) a list of
str, each of which is a file path/pattern or multiple file paths/patterns
separated by comma, or (4) a dictionary of the previous three approaches
for more advanced data mixing using named access. It should not be
specified when the following `tfds_name` is specified.
tfds_name: The name of the tensorflow dataset (TFDS). It should not be
specified when the above `input_path` is specified.
tfds_split: A str indicating which split of the data to load from TFDS. It
is required when above `tfds_name` is specified.
global_batch_size: The global batch size across all replicas.
is_training: Whether this data is used for training or not. This flag is
useful for consumers of this object to determine whether the data should
be repeated or shuffled.
drop_remainder: Whether the last batch should be dropped in the case it has
fewer than `global_batch_size` elements.
shuffle_buffer_size: The buffer size used for shuffling training data.
cache: Whether to cache dataset examples. If `True`, we will cache the
dataset after applying the decode_fn and parse_fn. It can be used to avoid
re-reading from disk, re-decoding and re-parsing the example on the second
epoch, but it requires significant memory overhead.
cycle_length: The number of files that will be processed concurrently when
interleaving files.
block_length: The number of consecutive elements to produce from each input
element before cycling to another input element when interleaving files.
deterministic: A boolean controlling whether determinism should be enforced.
sharding: Whether sharding is used in the input pipeline.
enable_tf_data_service: A boolean indicating whether to enable tf.data
service for the input pipeline.
tf_data_service_address: The URI of a tf.data service to offload
preprocessing onto during training. The URI should be in the format
"protocol://address", e.g. "grpc://tf-data-service:5050". It can be
overridden by `FLAGS.tf_data_service` flag in the binary.
tf_data_service_job_name: The name of the tf.data service job. This argument
makes it possible for multiple datasets to share the same job. The default
behavior is that the dataset creates anonymous, exclusively owned jobs.
tfds_data_dir: A str specifying the directory to read/write TFDS data.
tfds_as_supervised: A bool. When loading dataset from TFDS, if True, the
returned tf.data.Dataset will have a 2-tuple structure (input, label)
according to builder.info.supervised_keys; if False, the default, the
returned tf.data.Dataset will have a dictionary with all the features.
tfds_skip_decoding_feature: A str to indicate which features are skipped for
decoding when loading dataset from TFDS. Use comma to separate multiple
features. The main use case is to skip the image/video decoding for better
performance.
seed: An optional seed to use for deterministic shuffling/preprocessing.
"""
input_path
:
Union
[
Sequence
[
str
],
str
,
base_config
.
Config
]
=
""
tfds_name
:
str
=
""
tfds_split
:
str
=
""
global_batch_size
:
int
=
0
is_training
:
bool
=
None
drop_remainder
:
bool
=
True
shuffle_buffer_size
:
int
=
100
cache
:
bool
=
False
cycle_length
:
Optional
[
int
]
=
None
block_length
:
int
=
1
deterministic
:
Optional
[
bool
]
=
None
sharding
:
bool
=
True
enable_tf_data_service
:
bool
=
False
tf_data_service_address
:
Optional
[
str
]
=
None
tf_data_service_job_name
:
Optional
[
str
]
=
None
tfds_data_dir
:
str
=
""
tfds_as_supervised
:
bool
=
False
tfds_skip_decoding_feature
:
str
=
""
seed
:
Optional
[
int
]
=
None
@
dataclasses
.
dataclass
class
RuntimeConfig
(
base_config
.
Config
):
"""High-level configurations for Runtime.
These include parameters that are not directly related to the experiment,
e.g. directories, accelerator type, etc.
Attributes:
distribution_strategy: e.g. 'mirrored', 'tpu', etc.
enable_xla: Whether or not to enable XLA.
per_gpu_thread_count: thread count per GPU.
gpu_thread_mode: Whether and how the GPU device uses its own threadpool.
dataset_num_private_threads: Number of threads for a private threadpool
created for all datasets computation.
tpu: The address of the TPU to use, if any.
num_gpus: The number of GPUs to use, if any.
worker_hosts: comma-separated list of worker ip:port pairs for running
multi-worker models with DistributionStrategy.
task_index: If multi-worker training, the task index of this worker.
all_reduce_alg: Defines the algorithm for performing all-reduce.
num_packs: Sets `num_packs` in the cross device ops used in
MirroredStrategy. For details, see tf.distribute.NcclAllReduce.
mixed_precision_dtype: dtype of mixed precision policy. It can be 'float32',
'float16', or 'bfloat16'.
loss_scale: The type of loss scale, or 'float' value. This is used when
setting the mixed precision policy.
run_eagerly: Whether or not to run the experiment eagerly.
batchnorm_spatial_persistent: Whether or not to enable the spatial
persistent mode for CuDNN batch norm kernel for improved GPU performance.
"""
distribution_strategy
:
str
=
"mirrored"
enable_xla
:
bool
=
False
gpu_thread_mode
:
Optional
[
str
]
=
None
dataset_num_private_threads
:
Optional
[
int
]
=
None
per_gpu_thread_count
:
int
=
0
tpu
:
Optional
[
str
]
=
None
num_gpus
:
int
=
0
worker_hosts
:
Optional
[
str
]
=
None
task_index
:
int
=
-
1
all_reduce_alg
:
Optional
[
str
]
=
None
num_packs
:
int
=
1
mixed_precision_dtype
:
Optional
[
str
]
=
None
loss_scale
:
Optional
[
Union
[
str
,
float
]]
=
None
run_eagerly
:
bool
=
False
batchnorm_spatial_persistent
:
bool
=
False
# XLA runtime params.
# XLA params are only applied to the train_step.
# These augments can improve training speed. They can also improve eval, but
# may reduce usability and users would need to make changes to code.
# Whether to enable XLA dynamic padder
# infrastructure to handle dynamic shapes inputs inside XLA. True by
# default. Disabling this may cause correctness issues with dynamic shapes
# inputs, as XLA will just assume the inputs are with padded shapes. However
# users can optionally set it to False to improve device time if masking is
# already handled in the user side.
# If None, will respect XLA default.
tpu_enable_xla_dynamic_padder
:
Optional
[
bool
]
=
None
# Global model parallelism configurations.
num_cores_per_replica
:
int
=
1
default_shard_dim
:
int
=
-
1
def
model_parallelism
(
self
):
return
dict
(
num_cores_per_replica
=
self
.
num_cores_per_replica
,
default_shard_dim
=
self
.
default_shard_dim
)
@
dataclasses
.
dataclass
class
TrainerConfig
(
base_config
.
Config
):
"""Configuration for trainer.
Attributes:
optimizer_config: optimizer config, it includes optimizer, learning rate,
and warmup schedule configs.
train_tf_while_loop: whether or not to use tf while loop.
train_tf_function: whether or not to use tf_function for training loop.
eval_tf_function: whether or not to use tf_function for eval.
allow_tpu_summary: Whether to allow summary happen inside the XLA program
runs on TPU through automatic outside compilation.
steps_per_loop: number of steps per loop to report training metrics. This
can also be used to reduce host worker communication in a TPU setup.
summary_interval: number of steps between each summary.
checkpoint_interval: number of steps between checkpoints.
max_to_keep: max checkpoints to keep.
continuous_eval_timeout: maximum number of seconds to wait between
checkpoints, if set to None, continuous eval will wait indefinitely. This
is only used continuous_train_and_eval and continuous_eval modes. Default
value is 1 hrs.
train_steps: number of train steps.
validation_steps: number of eval steps. If `None`, the entire eval dataset
is used.
validation_interval: number of training steps to run between evaluations.
best_checkpoint_export_subdir: if set, the trainer will keep track of the
best evaluation metric, and export the corresponding best checkpoint under
`model_dir/best_checkpoint_export_subdir`. Note that this only works if
mode contains eval (such as `train_and_eval`, `continuous_eval`, and
`continuous_train_and_eval`).
best_checkpoint_eval_metric: for exporting the best checkpoint, which
evaluation metric the trainer should monitor. This can be any evaluation
metric appears on tensorboard.
best_checkpoint_metric_comp: for exporting the best checkpoint, how the
trainer should compare the evaluation metrics. This can be either `higher`
(higher the better) or `lower` (lower the better).
validation_summary_subdir: A 'str', sub directory for saving eval summary.
"""
optimizer_config
:
OptimizationConfig
=
OptimizationConfig
()
# Orbit settings.
train_tf_while_loop
:
bool
=
True
train_tf_function
:
bool
=
True
eval_tf_function
:
bool
=
True
eval_tf_while_loop
:
bool
=
False
allow_tpu_summary
:
bool
=
False
# Trainer intervals.
steps_per_loop
:
int
=
1000
summary_interval
:
int
=
1000
checkpoint_interval
:
int
=
1000
# Checkpoint manager.
max_to_keep
:
int
=
5
continuous_eval_timeout
:
int
=
60
*
60
# Train/Eval routines.
train_steps
:
int
=
0
# Sets validation steps to be -1 to evaluate the entire dataset.
validation_steps
:
int
=
-
1
validation_interval
:
int
=
1000
# Best checkpoint export.
best_checkpoint_export_subdir
:
str
=
""
best_checkpoint_eval_metric
:
str
=
""
best_checkpoint_metric_comp
:
str
=
"higher"
# Blowup recovery.
loss_upper_bound
:
float
=
1e6
recovery_begin_steps
:
int
=
0
# Enforcing the loss bound after these steps.
# When max trials < 0, no recovery module; max trials = 0, we will check
# the condition and fail the job if the condition happens; max trials > 0,
# we will retore the model states.
recovery_max_trials
:
int
=
0
validation_summary_subdir
:
str
=
"validation"
@
dataclasses
.
dataclass
class
TaskConfig
(
base_config
.
Config
):
init_checkpoint
:
str
=
""
model
:
Optional
[
base_config
.
Config
]
=
None
train_data
:
DataConfig
=
DataConfig
()
validation_data
:
DataConfig
=
DataConfig
()
name
:
Optional
[
str
]
=
None
@
dataclasses
.
dataclass
class
ExperimentConfig
(
base_config
.
Config
):
"""Top-level configuration."""
task
:
TaskConfig
=
TaskConfig
()
trainer
:
TrainerConfig
=
TrainerConfig
()
runtime
:
RuntimeConfig
=
RuntimeConfig
()
TensorFlow2x/ComputeVision/Classification/models-master/official/core/exp_factory.py
0 → 100644
View file @
a32ffa95
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Experiment factory methods."""
from
official.core
import
config_definitions
as
cfg
from
official.core
import
registry
_REGISTERED_CONFIGS
=
{}
def
register_config_factory
(
name
):
"""Register ExperimentConfig factory method."""
return
registry
.
register
(
_REGISTERED_CONFIGS
,
name
)
def
get_exp_config
(
exp_name
:
str
)
->
cfg
.
ExperimentConfig
:
"""Looks up the `ExperimentConfig` according to the `exp_name`."""
exp_creater
=
registry
.
lookup
(
_REGISTERED_CONFIGS
,
exp_name
)
return
exp_creater
()
TensorFlow2x/ComputeVision/Classification/models-master/official/core/export_base.py
0 → 100644
View file @
a32ffa95
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Base class for model export."""
import
abc
import
functools
from
typing
import
Any
,
Callable
,
Dict
,
Mapping
,
List
,
Optional
,
Text
,
Union
import
tensorflow
as
tf
from
tensorflow.python.saved_model.model_utils
import
export_utils
class
ExportModule
(
tf
.
Module
,
metaclass
=
abc
.
ABCMeta
):
"""Base Export Module."""
def
__init__
(
self
,
params
,
model
:
Union
[
tf
.
Module
,
tf
.
keras
.
Model
],
inference_step
:
Optional
[
Callable
[...,
Any
]]
=
None
,
*
,
preprocessor
:
Optional
[
Callable
[...,
Any
]]
=
None
,
postprocessor
:
Optional
[
Callable
[...,
Any
]]
=
None
):
"""Instantiates an ExportModel.
Examples:
`inference_step` must be a function that has `model` as an kwarg or the
second positional argument.
```
def _inference_step(inputs, model=None):
return model(inputs, training=False)
module = ExportModule(params, model, inference_step=_inference_step)
```
`preprocessor` and `postprocessor` could be either functions or `tf.Module`.
The usages of preprocessor and postprocessor are managed by the
implementation of `serve()` method.
Args:
params: A dataclass for parameters to the module.
model: A model instance which contains weights and forward computation.
inference_step: An optional callable to forward-pass the model. If not
specified, it creates a parital function with `model` as an required
kwarg.
preprocessor: An optional callable to preprocess the inputs.
postprocessor: An optional callable to postprocess the model outputs.
"""
super
().
__init__
(
name
=
None
)
self
.
model
=
model
self
.
params
=
params
if
inference_step
is
not
None
:
self
.
inference_step
=
functools
.
partial
(
inference_step
,
model
=
self
.
model
)
else
:
self
.
inference_step
=
functools
.
partial
(
self
.
model
.
__call__
,
training
=
False
)
self
.
preprocessor
=
preprocessor
self
.
postprocessor
=
postprocessor
@
abc
.
abstractmethod
def
serve
(
self
)
->
Mapping
[
Text
,
tf
.
Tensor
]:
"""The bare inference function which should run on all devices.
Expecting tensors are passed in through keyword arguments. Returns a
dictionary of tensors, when the keys will be used inside the SignatureDef.
"""
@
abc
.
abstractmethod
def
get_inference_signatures
(
self
,
function_keys
:
Dict
[
Text
,
Text
])
->
Mapping
[
Text
,
Any
]:
"""Get defined function signatures."""
def
export
(
export_module
:
ExportModule
,
function_keys
:
Union
[
List
[
Text
],
Dict
[
Text
,
Text
]],
export_savedmodel_dir
:
Text
,
checkpoint_path
:
Optional
[
Text
]
=
None
,
timestamped
:
bool
=
True
,
save_options
:
Optional
[
tf
.
saved_model
.
SaveOptions
]
=
None
)
->
Text
:
"""Exports to SavedModel format.
Args:
export_module: a ExportModule with the keras Model and serving tf.functions.
function_keys: a list of string keys to retrieve pre-defined serving
signatures. The signaute keys will be set with defaults. If a dictionary
is provided, the values will be used as signature keys.
export_savedmodel_dir: Output saved model directory.
checkpoint_path: Object-based checkpoint path or directory.
timestamped: Whether to export the savedmodel to a timestamped directory.
save_options: `SaveOptions` for `tf.saved_model.save`.
Returns:
The savedmodel directory path.
"""
ckpt_dir_or_file
=
checkpoint_path
if
ckpt_dir_or_file
is
not
None
and
tf
.
io
.
gfile
.
isdir
(
ckpt_dir_or_file
):
ckpt_dir_or_file
=
tf
.
train
.
latest_checkpoint
(
ckpt_dir_or_file
)
if
ckpt_dir_or_file
:
checkpoint
=
tf
.
train
.
Checkpoint
(
model
=
export_module
.
model
)
checkpoint
.
read
(
ckpt_dir_or_file
).
assert_existing_objects_matched
().
expect_partial
()
if
isinstance
(
function_keys
,
list
):
if
len
(
function_keys
)
==
1
:
function_keys
=
{
function_keys
[
0
]:
tf
.
saved_model
.
DEFAULT_SERVING_SIGNATURE_DEF_KEY
}
else
:
raise
ValueError
(
"If the function_keys is a list, it must contain a single element. %s"
%
function_keys
)
signatures
=
export_module
.
get_inference_signatures
(
function_keys
)
if
timestamped
:
export_dir
=
export_utils
.
get_timestamped_export_dir
(
export_savedmodel_dir
).
decode
(
"utf-8"
)
else
:
export_dir
=
export_savedmodel_dir
tf
.
saved_model
.
save
(
export_module
,
export_dir
,
signatures
=
signatures
,
options
=
save_options
)
return
export_dir
TensorFlow2x/ComputeVision/Classification/models-master/official/core/export_base_test.py
0 → 100644
View file @
a32ffa95
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for official.core.export_base."""
import
os
from
typing
import
Any
,
Dict
,
Mapping
,
Text
import
tensorflow
as
tf
from
official.core
import
export_base
class
TestModule
(
export_base
.
ExportModule
):
@
tf
.
function
def
serve
(
self
,
inputs
:
tf
.
Tensor
)
->
Mapping
[
Text
,
tf
.
Tensor
]:
x
=
inputs
if
self
.
preprocessor
is
None
else
self
.
preprocessor
(
inputs
=
inputs
)
x
=
self
.
inference_step
(
x
)
x
=
self
.
postprocessor
(
x
)
if
self
.
postprocessor
else
x
return
{
'outputs'
:
x
}
def
get_inference_signatures
(
self
,
function_keys
:
Dict
[
Text
,
Text
])
->
Mapping
[
Text
,
Any
]:
input_signature
=
tf
.
TensorSpec
(
shape
=
[
None
,
None
],
dtype
=
tf
.
float32
)
return
{
'foo'
:
self
.
serve
.
get_concrete_function
(
input_signature
)}
class
ExportBaseTest
(
tf
.
test
.
TestCase
):
def
test_export_module
(
self
):
tmp_dir
=
self
.
get_temp_dir
()
model
=
tf
.
keras
.
layers
.
Dense
(
2
)
inputs
=
tf
.
ones
([
2
,
4
],
tf
.
float32
)
expected_output
=
model
(
inputs
,
training
=
False
)
module
=
TestModule
(
params
=
None
,
model
=
model
)
ckpt_path
=
tf
.
train
.
Checkpoint
(
model
=
model
).
save
(
os
.
path
.
join
(
tmp_dir
,
'ckpt'
))
export_dir
=
export_base
.
export
(
module
,
[
'foo'
],
export_savedmodel_dir
=
tmp_dir
,
checkpoint_path
=
ckpt_path
,
timestamped
=
True
)
self
.
assertTrue
(
os
.
path
.
exists
(
os
.
path
.
join
(
export_dir
,
'saved_model.pb'
)))
self
.
assertTrue
(
os
.
path
.
exists
(
os
.
path
.
join
(
export_dir
,
'variables'
,
'variables.index'
)))
self
.
assertTrue
(
os
.
path
.
exists
(
os
.
path
.
join
(
export_dir
,
'variables'
,
'variables.data-00000-of-00001'
)))
imported
=
tf
.
saved_model
.
load
(
export_dir
)
output
=
imported
.
signatures
[
'foo'
](
inputs
)
self
.
assertAllClose
(
output
[
'outputs'
].
numpy
(),
expected_output
.
numpy
())
def
test_custom_inference_step
(
self
):
tmp_dir
=
self
.
get_temp_dir
()
model
=
tf
.
keras
.
layers
.
Dense
(
2
)
inputs
=
tf
.
ones
([
2
,
4
],
tf
.
float32
)
def
_inference_step
(
inputs
,
model
):
return
tf
.
nn
.
softmax
(
model
(
inputs
,
training
=
False
))
module
=
TestModule
(
params
=
None
,
model
=
model
,
inference_step
=
_inference_step
)
expected_output
=
_inference_step
(
inputs
,
model
)
ckpt_path
=
tf
.
train
.
Checkpoint
(
model
=
model
).
save
(
os
.
path
.
join
(
tmp_dir
,
'ckpt'
))
export_dir
=
export_base
.
export
(
module
,
[
'foo'
],
export_savedmodel_dir
=
tmp_dir
,
checkpoint_path
=
ckpt_path
,
timestamped
=
False
)
imported
=
tf
.
saved_model
.
load
(
export_dir
)
output
=
imported
.
signatures
[
'foo'
](
inputs
)
self
.
assertAllClose
(
output
[
'outputs'
].
numpy
(),
expected_output
.
numpy
())
def
test_processors
(
self
):
model
=
tf
.
Module
()
inputs
=
tf
.
zeros
((),
tf
.
float32
)
def
_inference_step
(
inputs
,
model
):
del
model
return
inputs
+
1.0
def
_preprocessor
(
inputs
):
print
(
inputs
)
return
inputs
+
0.1
module
=
TestModule
(
params
=
None
,
model
=
model
,
inference_step
=
_inference_step
,
preprocessor
=
_preprocessor
)
output
=
module
.
serve
(
inputs
)
self
.
assertAllClose
(
output
[
'outputs'
].
numpy
(),
1.1
)
class
_PostProcessor
(
tf
.
Module
):
def
__call__
(
self
,
inputs
):
return
inputs
+
0.01
module
=
TestModule
(
params
=
None
,
model
=
model
,
inference_step
=
_inference_step
,
preprocessor
=
_preprocessor
,
postprocessor
=
_PostProcessor
())
output
=
module
.
serve
(
inputs
)
self
.
assertAllClose
(
output
[
'outputs'
].
numpy
(),
1.11
)
if
__name__
==
'__main__'
:
tf
.
test
.
main
()
TensorFlow2x/ComputeVision/Classification/models-master/official/core/input_reader.py
0 → 100644
View file @
a32ffa95
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A common dataset reader."""
import
random
from
typing
import
Any
,
Callable
,
Dict
,
List
,
Optional
,
Sequence
,
Text
,
Union
from
absl
import
logging
import
tensorflow
as
tf
import
tensorflow_datasets
as
tfds
from
official.core
import
config_definitions
as
cfg
def
_get_random_integer
():
return
random
.
randint
(
0
,
(
1
<<
31
)
-
1
)
def
_maybe_map_fn
(
dataset
:
tf
.
data
.
Dataset
,
fn
:
Optional
[
Callable
[...,
Any
]]
=
None
)
->
tf
.
data
.
Dataset
:
"""Calls dataset.map if a valid function is passed in."""
return
dataset
if
fn
is
None
else
dataset
.
map
(
fn
,
num_parallel_calls
=
tf
.
data
.
experimental
.
AUTOTUNE
)
def
match_files
(
input_path
:
Union
[
Sequence
[
str
],
str
])
->
List
[
str
]:
"""Matches files from an input_path."""
matched_files
=
[]
# Read dataset from files.
usage
=
(
'`input_path` should be either (1) a str indicating a file '
'path/pattern, or (2) a str indicating multiple file '
'paths/patterns separated by comma (e.g "a, b, c" or no spaces '
'"a,b,c", or (3) a list of str, each of which is a file '
'path/pattern or multiple file paths/patterns separated by '
'comma, but got: %s'
)
if
isinstance
(
input_path
,
str
):
input_path_list
=
[
input_path
]
elif
isinstance
(
input_path
,
(
list
,
tuple
)):
if
any
(
not
isinstance
(
x
,
str
)
for
x
in
input_path
):
raise
ValueError
(
usage
%
input_path
)
input_path_list
=
input_path
else
:
raise
ValueError
(
usage
%
input_path
)
for
input_path
in
input_path_list
:
input_patterns
=
input_path
.
strip
().
split
(
','
)
for
input_pattern
in
input_patterns
:
input_pattern
=
input_pattern
.
strip
()
if
not
input_pattern
:
continue
if
'*'
in
input_pattern
or
'?'
in
input_pattern
:
tmp_matched_files
=
tf
.
io
.
gfile
.
glob
(
input_pattern
)
if
not
tmp_matched_files
:
raise
ValueError
(
'%s does not match any files.'
%
input_pattern
)
matched_files
.
extend
(
tmp_matched_files
)
else
:
matched_files
.
append
(
input_pattern
)
if
not
matched_files
:
raise
ValueError
(
'%s does not match any files.'
%
input_path
)
return
matched_files
def
_read_files_then_shard
(
matched_files
:
List
[
str
],
dataset_fn
,
input_context
:
Optional
[
tf
.
distribute
.
InputContext
]
=
None
,
sharding
:
bool
=
False
,
repeat
:
bool
=
False
)
->
tf
.
data
.
Dataset
:
"""Sends all data files to every worker and then shard by data."""
dataset
=
dataset_fn
(
matched_files
)
# When `input_file` is a path to a single file or the number of files is
# less than the number of input pipelines, disable auto sharding
# so that same input file is sent to all workers.
options
=
tf
.
data
.
Options
()
options
.
experimental_distribute
.
auto_shard_policy
=
(
tf
.
data
.
experimental
.
AutoShardPolicy
.
OFF
)
dataset
=
dataset
.
with_options
(
options
)
# Do not enable sharding if tf.data service is enabled, as sharding will be
# handled inside tf.data service.
if
sharding
and
input_context
and
(
input_context
.
num_input_pipelines
>
1
):
dataset
=
dataset
.
shard
(
input_context
.
num_input_pipelines
,
input_context
.
input_pipeline_id
)
if
repeat
:
dataset
=
dataset
.
repeat
()
return
dataset
def
_shard_files_then_read
(
matched_files
:
List
[
str
],
dataset_fn
,
input_context
:
Optional
[
tf
.
distribute
.
InputContext
]
=
None
,
seed
:
Optional
[
Union
[
int
,
tf
.
Tensor
]]
=
None
,
is_training
:
bool
=
False
,
sharding
:
bool
=
False
,
cache
:
bool
=
False
,
cycle_length
:
Optional
[
int
]
=
None
,
block_length
:
Optional
[
int
]
=
None
,
deterministic
:
bool
=
False
)
->
tf
.
data
.
Dataset
:
"""Shards the data files and then sent a split to every worker to read."""
dataset
=
tf
.
data
.
Dataset
.
from_tensor_slices
(
matched_files
)
# Shuffle and repeat at file level.
# If cache is enabled, `reshuffle_each_iteration` is set to False,
# because we will read the same cached data in every iteration anyway.
if
is_training
:
# We need a seed to shuffle the files so that when each TPU workers gets
# its own shard the files do not overlap.
if
sharding
and
seed
is
None
:
seed
=
_get_random_integer
()
dataset
=
dataset
.
shuffle
(
len
(
matched_files
),
seed
=
seed
,
reshuffle_each_iteration
=
True
if
not
cache
else
False
)
# Do not enable sharding if tf.data service is enabled, as sharding will be
# handled inside tf.data service.
if
sharding
and
input_context
and
(
input_context
.
num_input_pipelines
>
1
):
dataset
=
dataset
.
shard
(
input_context
.
num_input_pipelines
,
input_context
.
input_pipeline_id
)
# If cache is enabled, we will call `repeat()` later after `cache()`.
if
is_training
and
not
cache
:
dataset
=
dataset
.
repeat
()
dataset
=
dataset
.
interleave
(
map_func
=
dataset_fn
,
cycle_length
=
cycle_length
,
block_length
=
block_length
,
num_parallel_calls
=
(
cycle_length
if
cycle_length
else
tf
.
data
.
experimental
.
AUTOTUNE
),
deterministic
=
deterministic
)
return
dataset
def
_read_tfds
(
tfds_builder
:
tfds
.
core
.
DatasetBuilder
,
tfds_split
:
Text
,
tfds_skip_decoding_feature
:
Text
,
tfds_as_supervised
:
bool
,
input_context
:
Optional
[
tf
.
distribute
.
InputContext
]
=
None
,
seed
:
Optional
[
Union
[
int
,
tf
.
Tensor
]]
=
None
,
is_training
:
bool
=
False
,
cache
:
bool
=
False
,
cycle_length
:
Optional
[
int
]
=
None
,
block_length
:
Optional
[
int
]
=
None
)
->
tf
.
data
.
Dataset
:
"""Reads a dataset from tfds."""
# No op if exist.
tfds_builder
.
download_and_prepare
()
read_config
=
tfds
.
ReadConfig
(
interleave_cycle_length
=
cycle_length
,
interleave_block_length
=
block_length
,
input_context
=
input_context
,
shuffle_seed
=
seed
)
decoders
=
{}
if
tfds_skip_decoding_feature
:
for
skip_feature
in
tfds_skip_decoding_feature
.
split
(
','
):
decoders
[
skip_feature
.
strip
()]
=
tfds
.
decode
.
SkipDecoding
()
dataset
=
tfds_builder
.
as_dataset
(
split
=
tfds_split
,
shuffle_files
=
is_training
,
as_supervised
=
tfds_as_supervised
,
decoders
=
decoders
,
read_config
=
read_config
)
if
is_training
and
not
cache
:
dataset
=
dataset
.
repeat
()
return
dataset
class
InputReader
:
"""Input reader that returns a tf.data.Dataset instance."""
# A static random number which is the same across different InputReader
# instances.
static_randnum
=
_get_random_integer
()
def
__init__
(
self
,
params
:
cfg
.
DataConfig
,
dataset_fn
=
tf
.
data
.
TFRecordDataset
,
decoder_fn
:
Optional
[
Callable
[...,
Any
]]
=
None
,
combine_fn
:
Optional
[
Callable
[...,
Any
]]
=
None
,
sample_fn
:
Optional
[
Callable
[...,
Any
]]
=
None
,
parser_fn
:
Optional
[
Callable
[...,
Any
]]
=
None
,
transform_and_batch_fn
:
Optional
[
Callable
[
[
tf
.
data
.
Dataset
,
Optional
[
tf
.
distribute
.
InputContext
]],
tf
.
data
.
Dataset
]]
=
None
,
postprocess_fn
:
Optional
[
Callable
[...,
Any
]]
=
None
):
"""Initializes an InputReader instance.
Args:
params: A config_definitions.DataConfig object.
dataset_fn: A `tf.data.Dataset` that consumes the input files. For
example, it can be `tf.data.TFRecordDataset`.
decoder_fn: An optional `callable` that takes the serialized data string
and decodes them into the raw tensor dictionary.
combine_fn: An optional `callable` that takes a dictionarty of
`tf.data.Dataset` objects as input and outputs a combined dataset. It
will be executed after the decoder_fn and before the sample_fn.
sample_fn: An optional `callable` that takes a `tf.data.Dataset` object as
input and outputs the transformed dataset. It performs sampling on the
decoded raw tensors dict before the parser_fn.
parser_fn: An optional `callable` that takes the decoded raw tensors dict
and parse them into a dictionary of tensors that can be consumed by the
model. It will be executed after decoder_fn.
transform_and_batch_fn: An optional `callable` that takes a
`tf.data.Dataset` object and an optional `tf.distribute.InputContext` as
input, and returns a `tf.data.Dataset` object. It will be executed after
`parser_fn` to transform and batch the dataset; if None, after
`parser_fn` is executed, the dataset will be batched into per-replica
batch size.
postprocess_fn: A optional `callable` that processes batched tensors. It
will be executed after batching.
"""
if
params
.
input_path
and
params
.
tfds_name
:
raise
ValueError
(
'At most one of `input_path` and `tfds_name` can be '
'specified, but got %s and %s.'
%
(
params
.
input_path
,
params
.
tfds_name
))
if
isinstance
(
params
.
input_path
,
cfg
.
base_config
.
Config
)
and
combine_fn
is
None
:
raise
ValueError
(
'A `combine_fn` is required if the `input_path` is a dictionary.'
)
self
.
_tfds_builder
=
None
self
.
_matched_files
=
None
if
not
params
.
input_path
:
# Read dataset from TFDS.
if
not
params
.
tfds_split
:
raise
ValueError
(
'`tfds_name` is %s, but `tfds_split` is not specified.'
%
params
.
tfds_name
)
self
.
_tfds_builder
=
tfds
.
builder
(
params
.
tfds_name
,
data_dir
=
params
.
tfds_data_dir
)
else
:
self
.
_matched_files
=
self
.
get_files
(
params
.
input_path
)
self
.
_global_batch_size
=
params
.
global_batch_size
self
.
_is_training
=
params
.
is_training
self
.
_drop_remainder
=
params
.
drop_remainder
self
.
_shuffle_buffer_size
=
params
.
shuffle_buffer_size
self
.
_cache
=
params
.
cache
self
.
_cycle_length
=
params
.
cycle_length
self
.
_block_length
=
params
.
block_length
self
.
_deterministic
=
params
.
deterministic
self
.
_sharding
=
params
.
sharding
self
.
_tfds_split
=
params
.
tfds_split
self
.
_tfds_as_supervised
=
params
.
tfds_as_supervised
self
.
_tfds_skip_decoding_feature
=
params
.
tfds_skip_decoding_feature
self
.
_dataset_fn
=
dataset_fn
self
.
_decoder_fn
=
decoder_fn
self
.
_combine_fn
=
combine_fn
self
.
_sample_fn
=
sample_fn
self
.
_parser_fn
=
parser_fn
self
.
_transform_and_batch_fn
=
transform_and_batch_fn
self
.
_postprocess_fn
=
postprocess_fn
self
.
_seed
=
params
.
seed
# When tf.data service is enabled, each data service worker should get
# different random seeds. Thus, we set `seed` to None.
# Sharding should also be disabled because tf data service handles how
# each worker shard data with `processing_mode` in distribute method.
if
params
.
enable_tf_data_service
:
self
.
_seed
=
None
self
.
_sharding
=
False
self
.
_enable_tf_data_service
=
(
params
.
enable_tf_data_service
and
params
.
tf_data_service_address
)
self
.
_tf_data_service_address
=
params
.
tf_data_service_address
if
self
.
_enable_tf_data_service
:
# Add a random seed as the tf.data service job name suffix, so tf.data
# service doesn't reuse the previous state if TPU worker gets preempted.
self
.
_tf_data_service_job_name
=
(
params
.
tf_data_service_job_name
+
str
(
self
.
static_randnum
))
self
.
_enable_round_robin_tf_data_service
=
params
.
get
(
'enable_round_robin_tf_data_service'
,
False
)
@
property
def
tfds_info
(
self
)
->
tfds
.
core
.
DatasetInfo
:
"""Returns TFDS dataset info, if available."""
if
self
.
_tfds_builder
:
return
self
.
_tfds_builder
.
info
else
:
raise
ValueError
(
'tfds_info is not available, because the dataset '
'is not loaded from tfds.'
)
def
get_files
(
self
,
input_path
):
"""Gets matched files. Can be overridden by subclasses."""
if
not
input_path
:
return
None
# we want to combine / mix datasets
if
isinstance
(
input_path
,
cfg
.
base_config
.
Config
):
matched_files
=
{}
for
k
,
v
in
input_path
.
as_dict
().
items
():
matched_files
[
k
]
=
match_files
(
v
)
# single dataset
else
:
matched_files
=
match_files
(
input_path
)
return
matched_files
def
_read_data_source
(
self
,
matched_files
:
Union
[
Dict
[
str
,
List
[
str
]],
List
[
str
]],
dataset_fn
,
input_context
:
Optional
[
tf
.
distribute
.
InputContext
]
=
None
,
tfds_builder
:
Optional
[
tfds
.
core
.
DatasetBuilder
]
=
None
):
"""Reads the data source (files/tfds) to a dataset."""
def
_files_to_dataset
(
files
:
List
[
str
])
->
tf
.
data
.
Dataset
:
if
len
(
files
)
>
1
:
if
input_context
and
(
len
(
files
)
<
input_context
.
num_input_pipelines
):
logging
.
warn
(
'The number of files %d is less than the number of input pipelines '
'%d. We will send all input files to every worker. '
'Please consider sharding your data into more files.'
,
len
(
files
),
input_context
.
num_input_pipelines
)
return
_read_files_then_shard
(
files
,
dataset_fn
,
input_context
,
sharding
=
self
.
_sharding
,
repeat
=
self
.
_is_training
and
not
self
.
_cache
)
else
:
return
_shard_files_then_read
(
files
,
dataset_fn
,
input_context
,
seed
=
self
.
_seed
,
is_training
=
self
.
_is_training
,
sharding
=
self
.
_sharding
,
cache
=
self
.
_cache
,
cycle_length
=
self
.
_cycle_length
,
block_length
=
self
.
_block_length
,
deterministic
=
self
.
_deterministic
)
elif
len
(
files
)
==
1
:
return
_read_files_then_shard
(
files
,
dataset_fn
,
input_context
,
sharding
=
self
.
_sharding
,
repeat
=
self
.
_is_training
and
not
self
.
_cache
)
else
:
raise
ValueError
(
'It is unexpected that `tfds_builder` is None and '
'there is also no `files`.'
)
if
tfds_builder
:
dataset
=
_read_tfds
(
tfds_builder
=
self
.
_tfds_builder
,
tfds_split
=
self
.
_tfds_split
,
tfds_skip_decoding_feature
=
self
.
_tfds_skip_decoding_feature
,
tfds_as_supervised
=
self
.
_tfds_as_supervised
,
input_context
=
input_context
,
seed
=
self
.
_seed
,
is_training
=
self
.
_is_training
,
cache
=
self
.
_cache
,
cycle_length
=
self
.
_cycle_length
,
block_length
=
self
.
_block_length
)
elif
isinstance
(
matched_files
,
(
list
,
tuple
)):
dataset
=
_files_to_dataset
(
matched_files
)
elif
isinstance
(
matched_files
,
dict
):
dataset
=
{}
for
k
,
fs
in
matched_files
.
items
():
dataset
[
k
]
=
_files_to_dataset
(
fs
)
else
:
raise
ValueError
(
'`matched_files` should be a list or dict.'
)
return
dataset
def
_decode_and_parse_dataset
(
self
,
dataset
:
Union
[
tf
.
data
.
Dataset
,
Dict
[
Text
,
tf
.
data
.
Dataset
]],
batch_size
:
int
,
input_context
:
Optional
[
tf
.
distribute
.
InputContext
]
=
None
)
->
tf
.
data
.
Dataset
:
"""Returns a tf.data.Dataset object after shuffling, decoding, and parsing."""
def
_shuffle_and_decode
(
ds
):
# If cache is enabled, we will call `shuffle()` later after `cache()`.
if
self
.
_is_training
and
not
self
.
_cache
:
ds
=
ds
.
shuffle
(
self
.
_shuffle_buffer_size
,
seed
=
self
.
_seed
)
# Decode
ds
=
_maybe_map_fn
(
ds
,
self
.
_decoder_fn
)
return
ds
dataset
=
tf
.
nest
.
map_structure
(
_shuffle_and_decode
,
dataset
)
if
tf
.
nest
.
is_nested
(
dataset
):
dataset
=
self
.
_combine_fn
(
dataset
)
if
self
.
_sample_fn
is
not
None
:
dataset
=
dataset
.
apply
(
self
.
_sample_fn
)
dataset
=
_maybe_map_fn
(
dataset
,
self
.
_parser_fn
)
if
self
.
_cache
:
dataset
=
dataset
.
cache
()
if
self
.
_is_training
:
dataset
=
dataset
.
repeat
()
dataset
=
dataset
.
shuffle
(
self
.
_shuffle_buffer_size
,
seed
=
self
.
_seed
)
if
self
.
_transform_and_batch_fn
is
not
None
:
dataset
=
self
.
_transform_and_batch_fn
(
dataset
,
input_context
)
else
:
per_replica_batch_size
=
input_context
.
get_per_replica_batch_size
(
batch_size
)
if
input_context
else
batch_size
dataset
=
dataset
.
batch
(
per_replica_batch_size
,
drop_remainder
=
self
.
_drop_remainder
)
return
dataset
def
_maybe_apply_data_service
(
self
,
dataset
:
tf
.
data
.
Dataset
,
input_context
:
Optional
[
tf
.
distribute
.
InputContext
]
=
None
)
->
tf
.
data
.
Dataset
:
"""Potentially distributes a dataset."""
if
self
.
_enable_tf_data_service
and
input_context
:
if
self
.
_enable_round_robin_tf_data_service
:
replicas_per_input_pipeline
=
input_context
.
num_replicas_in_sync
//
(
input_context
.
num_input_pipelines
)
base_consumer_index
=
input_context
.
input_pipeline_id
*
(
replicas_per_input_pipeline
)
num_consumers
=
input_context
.
num_input_pipelines
*
(
replicas_per_input_pipeline
)
range_dataset
=
tf
.
data
.
Dataset
.
range
(
replicas_per_input_pipeline
)
dataset
=
range_dataset
.
map
(
lambda
i
:
dataset
.
apply
(
# pylint: disable=g-long-lambda
tf
.
data
.
experimental
.
service
.
distribute
(
processing_mode
=
'parallel_epochs'
,
service
=
self
.
_tf_data_service_address
,
job_name
=
self
.
_tf_data_service_job_name
,
consumer_index
=
base_consumer_index
+
i
,
num_consumers
=
num_consumers
)))
# Use parallel interleave to read multiple batches from a tf.data
# service worker in parallel.
dataset
=
dataset
.
interleave
(
lambda
x
:
x
,
cycle_length
=
replicas_per_input_pipeline
,
num_parallel_calls
=
replicas_per_input_pipeline
,
deterministic
=
True
)
else
:
dataset
=
dataset
.
apply
(
tf
.
data
.
experimental
.
service
.
distribute
(
processing_mode
=
'parallel_epochs'
,
service
=
self
.
_tf_data_service_address
,
job_name
=
self
.
_tf_data_service_job_name
))
return
dataset
def
read
(
self
,
input_context
:
Optional
[
tf
.
distribute
.
InputContext
]
=
None
,
dataset
:
Optional
[
tf
.
data
.
Dataset
]
=
None
)
->
tf
.
data
.
Dataset
:
"""Generates a tf.data.Dataset object."""
if
dataset
is
None
:
dataset
=
self
.
_read_data_source
(
self
.
_matched_files
,
self
.
_dataset_fn
,
input_context
,
self
.
_tfds_builder
)
dataset
=
self
.
_decode_and_parse_dataset
(
dataset
,
self
.
_global_batch_size
,
input_context
)
dataset
=
_maybe_map_fn
(
dataset
,
self
.
_postprocess_fn
)
dataset
=
self
.
_maybe_apply_data_service
(
dataset
,
input_context
)
if
self
.
_deterministic
is
not
None
:
options
=
tf
.
data
.
Options
()
options
.
experimental_deterministic
=
self
.
_deterministic
dataset
=
dataset
.
with_options
(
options
)
return
dataset
.
prefetch
(
tf
.
data
.
experimental
.
AUTOTUNE
)
TensorFlow2x/ComputeVision/Classification/models-master/official/core/registry.py
0 → 100644
View file @
a32ffa95
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Registry utility."""
def
register
(
registered_collection
,
reg_key
):
"""Register decorated function or class to collection.
Register decorated function or class into registered_collection, in a
hierarchical order. For example, when reg_key="my_model/my_exp/my_config_0"
the decorated function or class is stored under
registered_collection["my_model"]["my_exp"]["my_config_0"].
This decorator is supposed to be used together with the lookup() function in
this file.
Args:
registered_collection: a dictionary. The decorated function or class will be
put into this collection.
reg_key: The key for retrieving the registered function or class. If reg_key
is a string, it can be hierarchical like my_model/my_exp/my_config_0
Returns:
A decorator function
Raises:
KeyError: when function or class to register already exists.
"""
def
decorator
(
fn_or_cls
):
"""Put fn_or_cls in the dictionary."""
if
isinstance
(
reg_key
,
str
):
hierarchy
=
reg_key
.
split
(
"/"
)
collection
=
registered_collection
for
h_idx
,
entry_name
in
enumerate
(
hierarchy
[:
-
1
]):
if
entry_name
not
in
collection
:
collection
[
entry_name
]
=
{}
collection
=
collection
[
entry_name
]
if
not
isinstance
(
collection
,
dict
):
raise
KeyError
(
"Collection path {} at position {} already registered as "
"a function or class."
.
format
(
entry_name
,
h_idx
))
leaf_reg_key
=
hierarchy
[
-
1
]
else
:
collection
=
registered_collection
leaf_reg_key
=
reg_key
if
leaf_reg_key
in
collection
:
raise
KeyError
(
"Function or class {} registered multiple times."
.
format
(
leaf_reg_key
))
collection
[
leaf_reg_key
]
=
fn_or_cls
return
fn_or_cls
return
decorator
def
lookup
(
registered_collection
,
reg_key
):
"""Lookup and return decorated function or class in the collection.
Lookup decorated function or class in registered_collection, in a
hierarchical order. For example, when
reg_key="my_model/my_exp/my_config_0",
this function will return
registered_collection["my_model"]["my_exp"]["my_config_0"].
Args:
registered_collection: a dictionary. The decorated function or class will be
retrieved from this collection.
reg_key: The key for retrieving the registered function or class. If reg_key
is a string, it can be hierarchical like my_model/my_exp/my_config_0
Returns:
The registered function or class.
Raises:
LookupError: when reg_key cannot be found.
"""
if
isinstance
(
reg_key
,
str
):
hierarchy
=
reg_key
.
split
(
"/"
)
collection
=
registered_collection
for
h_idx
,
entry_name
in
enumerate
(
hierarchy
):
if
entry_name
not
in
collection
:
raise
LookupError
(
f
"collection path
{
entry_name
}
at position
{
h_idx
}
is never "
f
"registered. Please make sure the
{
entry_name
}
and its library is "
"imported and linked to the trainer binary."
)
collection
=
collection
[
entry_name
]
return
collection
else
:
if
reg_key
not
in
registered_collection
:
raise
LookupError
(
f
"registration key
{
reg_key
}
is never "
f
"registered. Please make sure the
{
reg_key
}
and its library is "
"imported and linked to the trainer binary."
)
return
registered_collection
[
reg_key
]
TensorFlow2x/ComputeVision/Classification/models-master/official/core/registry_test.py
0 → 100644
View file @
a32ffa95
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for registry."""
import
tensorflow
as
tf
from
official.core
import
registry
class
RegistryTest
(
tf
.
test
.
TestCase
):
def
test_register
(
self
):
collection
=
{}
@
registry
.
register
(
collection
,
'functions/func_0'
)
def
func_test
():
pass
self
.
assertEqual
(
registry
.
lookup
(
collection
,
'functions/func_0'
),
func_test
)
@
registry
.
register
(
collection
,
'classes/cls_0'
)
class
ClassRegistryKey
:
pass
self
.
assertEqual
(
registry
.
lookup
(
collection
,
'classes/cls_0'
),
ClassRegistryKey
)
@
registry
.
register
(
collection
,
ClassRegistryKey
)
class
ClassRegistryValue
:
pass
self
.
assertEqual
(
registry
.
lookup
(
collection
,
ClassRegistryKey
),
ClassRegistryValue
)
def
test_register_hierarchy
(
self
):
collection
=
{}
@
registry
.
register
(
collection
,
'functions/func_0'
)
def
func_test0
():
pass
@
registry
.
register
(
collection
,
'func_1'
)
def
func_test1
():
pass
@
registry
.
register
(
collection
,
func_test1
)
def
func_test2
():
pass
expected_collection
=
{
'functions'
:
{
'func_0'
:
func_test0
,
},
'func_1'
:
func_test1
,
func_test1
:
func_test2
,
}
self
.
assertEqual
(
collection
,
expected_collection
)
def
test_register_error
(
self
):
collection
=
{}
@
registry
.
register
(
collection
,
'functions/func_0'
)
def
func_test0
():
# pylint: disable=unused-variable
pass
with
self
.
assertRaises
(
KeyError
):
@
registry
.
register
(
collection
,
'functions/func_0/sub_func'
)
def
func_test1
():
# pylint: disable=unused-variable
pass
with
self
.
assertRaises
(
LookupError
):
registry
.
lookup
(
collection
,
'non-exist'
)
if
__name__
==
'__main__'
:
tf
.
test
.
main
()
TensorFlow2x/ComputeVision/Classification/models-master/official/core/task_factory.py
0 → 100644
View file @
a32ffa95
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A global factory to register and access all registered tasks."""
from
official.core
import
registry
_REGISTERED_TASK_CLS
=
{}
# TODO(b/158741360): Add type annotations once pytype checks across modules.
def
register_task_cls
(
task_config_cls
):
"""Decorates a factory of Tasks for lookup by a subclass of TaskConfig.
This decorator supports registration of tasks as follows:
```
@dataclasses.dataclass
class MyTaskConfig(TaskConfig):
# Add fields here.
pass
@register_task_cls(MyTaskConfig)
class MyTask(Task):
# Inherits def __init__(self, task_config).
pass
my_task_config = MyTaskConfig()
my_task = get_task(my_task_config) # Returns MyTask(my_task_config).
```
Besisdes a class itself, other callables that create a Task from a TaskConfig
can be decorated by the result of this function, as long as there is at most
one registration for each config class.
Args:
task_config_cls: a subclass of TaskConfig (*not* an instance of TaskConfig).
Each task_config_cls can only be used for a single registration.
Returns:
A callable for use as class decorator that registers the decorated class
for creation from an instance of task_config_cls.
"""
return
registry
.
register
(
_REGISTERED_TASK_CLS
,
task_config_cls
)
def
get_task
(
task_config
,
**
kwargs
):
"""Creates a Task (of suitable subclass type) from task_config."""
# TODO(hongkuny): deprecate the task factory to use config.BUILDER.
if
task_config
.
BUILDER
is
not
None
:
return
task_config
.
BUILDER
(
task_config
,
**
kwargs
)
return
get_task_cls
(
task_config
.
__class__
)(
task_config
,
**
kwargs
)
# The user-visible get_task() is defined after classes have been registered.
# TODO(b/158741360): Add type annotations once pytype checks across modules.
def
get_task_cls
(
task_config_cls
):
task_cls
=
registry
.
lookup
(
_REGISTERED_TASK_CLS
,
task_config_cls
)
return
task_cls
TensorFlow2x/ComputeVision/Classification/models-master/official/core/test_utils.py
0 → 100644
View file @
a32ffa95
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utils for testing."""
import
tensorflow
as
tf
class
FakeKerasModel
(
tf
.
keras
.
Model
):
"""Fake keras model for testing."""
def
__init__
(
self
):
super
().
__init__
()
self
.
dense
=
tf
.
keras
.
layers
.
Dense
(
4
,
activation
=
tf
.
nn
.
relu
)
self
.
dense2
=
tf
.
keras
.
layers
.
Dense
(
4
,
activation
=
tf
.
nn
.
relu
)
def
call
(
self
,
inputs
):
return
self
.
dense2
(
self
.
dense
(
inputs
))
class
_Dense
(
tf
.
Module
):
"""A dense layer."""
def
__init__
(
self
,
input_dim
,
output_size
,
name
=
None
):
super
().
__init__
(
name
=
name
)
with
self
.
name_scope
:
self
.
w
=
tf
.
Variable
(
tf
.
random
.
normal
([
input_dim
,
output_size
]),
name
=
'w'
)
self
.
b
=
tf
.
Variable
(
tf
.
zeros
([
output_size
]),
name
=
'b'
)
@
tf
.
Module
.
with_name_scope
def
__call__
(
self
,
x
):
y
=
tf
.
matmul
(
x
,
self
.
w
)
+
self
.
b
return
tf
.
nn
.
relu
(
y
)
class
FakeModule
(
tf
.
Module
):
"""Fake model using tf.Module for testing."""
def
__init__
(
self
,
input_size
,
name
=
None
):
super
().
__init__
(
name
=
name
)
with
self
.
name_scope
:
self
.
dense
=
_Dense
(
input_size
,
4
,
name
=
'dense'
)
self
.
dense2
=
_Dense
(
4
,
4
,
name
=
'dense_1'
)
@
tf
.
Module
.
with_name_scope
def
__call__
(
self
,
x
):
return
self
.
dense2
(
self
.
dense
(
x
))
TensorFlow2x/ComputeVision/Classification/models-master/official/core/train_lib.py
0 → 100644
View file @
a32ffa95
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TFM common training driver library."""
# pytype: disable=attribute-error
import
os
from
typing
import
Any
,
Mapping
,
Optional
,
Tuple
# Import libraries
from
absl
import
logging
import
orbit
import
tensorflow
as
tf
from
official.core
import
actions
from
official.core
import
base_task
from
official.core
import
base_trainer
from
official.core
import
config_definitions
from
official.core
import
train_utils
maybe_create_best_ckpt_exporter
=
train_utils
.
maybe_create_best_ckpt_exporter
def
run_experiment
(
distribution_strategy
:
tf
.
distribute
.
Strategy
,
task
:
base_task
.
Task
,
mode
:
str
,
params
:
config_definitions
.
ExperimentConfig
,
model_dir
:
str
,
run_post_eval
:
bool
=
False
,
save_summary
:
bool
=
True
,
trainer
:
Optional
[
base_trainer
.
Trainer
]
=
None
,
controller_cls
=
orbit
.
Controller
)
->
Tuple
[
tf
.
keras
.
Model
,
Mapping
[
str
,
Any
]]:
"""Runs train/eval configured by the experiment params.
Args:
distribution_strategy: A distribution distribution_strategy.
task: A Task instance.
mode: A 'str', specifying the mode. Can be 'train', 'eval', 'train_and_eval'
or 'continuous_eval'.
params: ExperimentConfig instance.
model_dir: A 'str', a path to store model checkpoints and summaries.
run_post_eval: Whether to run post eval once after training, metrics logs
are returned.
save_summary: Whether to save train and validation summary.
trainer: the base_trainer.Trainer instance. It should be created within the
strategy.scope().
controller_cls: The controller class to manage the train and eval process.
Must be a orbit.Controller subclass.
Returns:
A 2-tuple of (model, eval_logs).
model: `tf.keras.Model` instance.
eval_logs: returns eval metrics logs when run_post_eval is set to True,
otherwise, returns {}.
"""
with
distribution_strategy
.
scope
():
if
not
trainer
:
trainer
=
train_utils
.
create_trainer
(
params
,
task
,
train
=
'train'
in
mode
,
evaluate
=
(
'eval'
in
mode
)
or
run_post_eval
,
checkpoint_exporter
=
maybe_create_best_ckpt_exporter
(
params
,
model_dir
))
if
trainer
.
checkpoint
:
if
model_dir
is
None
:
raise
ValueError
(
'model_dir must be specified, but got None'
)
checkpoint_manager
=
tf
.
train
.
CheckpointManager
(
trainer
.
checkpoint
,
directory
=
model_dir
,
max_to_keep
=
params
.
trainer
.
max_to_keep
,
step_counter
=
trainer
.
global_step
,
checkpoint_interval
=
params
.
trainer
.
checkpoint_interval
,
init_fn
=
trainer
.
initialize
)
else
:
checkpoint_manager
=
None
controller
=
controller_cls
(
strategy
=
distribution_strategy
,
trainer
=
trainer
if
'train'
in
mode
else
None
,
evaluator
=
trainer
,
global_step
=
trainer
.
global_step
,
steps_per_loop
=
params
.
trainer
.
steps_per_loop
,
checkpoint_manager
=
checkpoint_manager
,
summary_dir
=
os
.
path
.
join
(
model_dir
,
'train'
)
if
(
save_summary
)
else
None
,
eval_summary_dir
=
os
.
path
.
join
(
model_dir
,
params
.
trainer
.
validation_summary_subdir
)
if
(
save_summary
)
else
None
,
summary_interval
=
params
.
trainer
.
summary_interval
if
(
save_summary
)
else
None
,
train_actions
=
actions
.
get_train_actions
(
params
,
trainer
,
model_dir
,
checkpoint_manager
=
checkpoint_manager
),
eval_actions
=
actions
.
get_eval_actions
(
params
,
trainer
,
model_dir
))
logging
.
info
(
'Starts to execute mode: %s'
,
mode
)
with
distribution_strategy
.
scope
():
if
mode
==
'train'
:
controller
.
train
(
steps
=
params
.
trainer
.
train_steps
)
elif
mode
==
'train_and_eval'
:
controller
.
train_and_evaluate
(
train_steps
=
params
.
trainer
.
train_steps
,
eval_steps
=
params
.
trainer
.
validation_steps
,
eval_interval
=
params
.
trainer
.
validation_interval
)
elif
mode
==
'eval'
:
controller
.
evaluate
(
steps
=
params
.
trainer
.
validation_steps
)
elif
mode
==
'continuous_eval'
:
def
timeout_fn
():
if
trainer
.
global_step
.
numpy
()
>=
params
.
trainer
.
train_steps
:
return
True
return
False
controller
.
evaluate_continuously
(
steps
=
params
.
trainer
.
validation_steps
,
timeout
=
params
.
trainer
.
continuous_eval_timeout
,
timeout_fn
=
timeout_fn
)
else
:
raise
NotImplementedError
(
'The mode is not implemented: %s'
%
mode
)
num_params
=
train_utils
.
try_count_params
(
trainer
.
model
)
if
num_params
is
not
None
:
logging
.
info
(
'Number of trainable params in model: %f Millions.'
,
num_params
/
10.
**
6
)
flops
=
train_utils
.
try_count_flops
(
trainer
.
model
)
if
flops
is
not
None
:
logging
.
info
(
'FLOPs (multi-adds) in model: %f Billions.'
,
flops
/
10.
**
9
/
2
)
if
run_post_eval
:
with
distribution_strategy
.
scope
():
return
trainer
.
model
,
trainer
.
evaluate
(
tf
.
convert_to_tensor
(
params
.
trainer
.
validation_steps
))
else
:
return
trainer
.
model
,
{}
TensorFlow2x/ComputeVision/Classification/models-master/official/core/train_lib_test.py
0 → 100644
View file @
a32ffa95
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for train_ctl_lib."""
import
json
import
os
from
absl
import
flags
from
absl.testing
import
flagsaver
from
absl.testing
import
parameterized
import
numpy
as
np
import
tensorflow
as
tf
from
tensorflow.python.distribute
import
combinations
from
tensorflow.python.distribute
import
strategy_combinations
from
official.common
import
flags
as
tfm_flags
# pylint: disable=unused-import
from
official.common
import
registry_imports
# pylint: enable=unused-import
from
official.core
import
task_factory
from
official.core
import
train_lib
from
official.core
import
train_utils
from
official.utils.testing
import
mock_task
FLAGS
=
flags
.
FLAGS
tfm_flags
.
define_flags
()
class
TrainTest
(
tf
.
test
.
TestCase
,
parameterized
.
TestCase
):
def
setUp
(
self
):
super
(
TrainTest
,
self
).
setUp
()
self
.
_test_config
=
{
'trainer'
:
{
'checkpoint_interval'
:
10
,
'steps_per_loop'
:
10
,
'summary_interval'
:
10
,
'train_steps'
:
10
,
'validation_steps'
:
5
,
'validation_interval'
:
10
,
'continuous_eval_timeout'
:
1
,
'validation_summary_subdir'
:
'validation'
,
'optimizer_config'
:
{
'optimizer'
:
{
'type'
:
'sgd'
,
},
'learning_rate'
:
{
'type'
:
'constant'
}
}
},
}
@
combinations
.
generate
(
combinations
.
combine
(
distribution_strategy
=
[
strategy_combinations
.
default_strategy
,
strategy_combinations
.
cloud_tpu_strategy
,
strategy_combinations
.
one_device_strategy_gpu
,
],
flag_mode
=
[
'train'
,
'eval'
,
'train_and_eval'
],
run_post_eval
=
[
True
,
False
]))
def
test_end_to_end
(
self
,
distribution_strategy
,
flag_mode
,
run_post_eval
):
model_dir
=
self
.
get_temp_dir
()
flags_dict
=
dict
(
experiment
=
'mock'
,
mode
=
flag_mode
,
model_dir
=
model_dir
,
params_override
=
json
.
dumps
(
self
.
_test_config
))
with
flagsaver
.
flagsaver
(
**
flags_dict
):
params
=
train_utils
.
parse_configuration
(
flags
.
FLAGS
)
train_utils
.
serialize_config
(
params
,
model_dir
)
with
distribution_strategy
.
scope
():
task
=
task_factory
.
get_task
(
params
.
task
,
logging_dir
=
model_dir
)
_
,
logs
=
train_lib
.
run_experiment
(
distribution_strategy
=
distribution_strategy
,
task
=
task
,
mode
=
flag_mode
,
params
=
params
,
model_dir
=
model_dir
,
run_post_eval
=
run_post_eval
)
if
'eval'
in
flag_mode
:
self
.
assertTrue
(
tf
.
io
.
gfile
.
exists
(
os
.
path
.
join
(
model_dir
,
params
.
trainer
.
validation_summary_subdir
)))
if
run_post_eval
:
self
.
assertNotEmpty
(
logs
)
else
:
self
.
assertEmpty
(
logs
)
self
.
assertNotEmpty
(
tf
.
io
.
gfile
.
glob
(
os
.
path
.
join
(
model_dir
,
'params.yaml'
)))
if
flag_mode
==
'eval'
:
return
self
.
assertNotEmpty
(
tf
.
io
.
gfile
.
glob
(
os
.
path
.
join
(
model_dir
,
'checkpoint'
)))
# Tests continuous evaluation.
_
,
logs
=
train_lib
.
run_experiment
(
distribution_strategy
=
distribution_strategy
,
task
=
task
,
mode
=
'continuous_eval'
,
params
=
params
,
model_dir
=
model_dir
,
run_post_eval
=
run_post_eval
)
@
combinations
.
generate
(
combinations
.
combine
(
distribution_strategy
=
[
strategy_combinations
.
default_strategy
,
strategy_combinations
.
cloud_tpu_strategy
,
strategy_combinations
.
one_device_strategy_gpu
,
],
flag_mode
=
[
'train'
,
'train_and_eval'
],
))
def
test_recovery_nan_error
(
self
,
distribution_strategy
,
flag_mode
):
model_dir
=
self
.
get_temp_dir
()
flags_dict
=
dict
(
experiment
=
'mock'
,
mode
=
flag_mode
,
model_dir
=
model_dir
,
params_override
=
json
.
dumps
(
self
.
_test_config
))
with
flagsaver
.
flagsaver
(
**
flags_dict
):
params
=
train_utils
.
parse_configuration
(
flags
.
FLAGS
)
train_utils
.
serialize_config
(
params
,
model_dir
)
with
distribution_strategy
.
scope
():
# task = task_factory.get_task(params.task, logging_dir=model_dir)
task
=
mock_task
.
MockTask
(
params
.
task
,
logging_dir
=
model_dir
)
# Set the loss to NaN to trigger RunTimeError.
def
build_losses
(
labels
,
model_outputs
,
aux_losses
=
None
):
del
labels
,
model_outputs
return
tf
.
constant
([
np
.
nan
],
tf
.
float32
)
+
aux_losses
task
.
build_losses
=
build_losses
with
self
.
assertRaises
(
RuntimeError
):
train_lib
.
run_experiment
(
distribution_strategy
=
distribution_strategy
,
task
=
task
,
mode
=
flag_mode
,
params
=
params
,
model_dir
=
model_dir
)
@
combinations
.
generate
(
combinations
.
combine
(
distribution_strategy
=
[
strategy_combinations
.
default_strategy
,
strategy_combinations
.
cloud_tpu_strategy
,
strategy_combinations
.
one_device_strategy_gpu
,
],
flag_mode
=
[
'train'
],
))
def
test_recovery
(
self
,
distribution_strategy
,
flag_mode
):
loss_threshold
=
1.0
model_dir
=
self
.
get_temp_dir
()
flags_dict
=
dict
(
experiment
=
'mock'
,
mode
=
flag_mode
,
model_dir
=
model_dir
,
params_override
=
json
.
dumps
(
self
.
_test_config
))
with
flagsaver
.
flagsaver
(
**
flags_dict
):
params
=
train_utils
.
parse_configuration
(
flags
.
FLAGS
)
params
.
trainer
.
loss_upper_bound
=
loss_threshold
params
.
trainer
.
recovery_max_trials
=
1
train_utils
.
serialize_config
(
params
,
model_dir
)
with
distribution_strategy
.
scope
():
task
=
task_factory
.
get_task
(
params
.
task
,
logging_dir
=
model_dir
)
# Saves a checkpoint for reference.
model
=
task
.
build_model
()
checkpoint
=
tf
.
train
.
Checkpoint
(
model
=
model
)
checkpoint_manager
=
tf
.
train
.
CheckpointManager
(
checkpoint
,
self
.
get_temp_dir
(),
max_to_keep
=
2
)
checkpoint_manager
.
save
()
before_weights
=
model
.
get_weights
()
def
build_losses
(
labels
,
model_outputs
,
aux_losses
=
None
):
del
labels
,
model_outputs
return
tf
.
constant
([
loss_threshold
],
tf
.
float32
)
+
aux_losses
task
.
build_losses
=
build_losses
model
,
_
=
train_lib
.
run_experiment
(
distribution_strategy
=
distribution_strategy
,
task
=
task
,
mode
=
flag_mode
,
params
=
params
,
model_dir
=
model_dir
)
after_weights
=
model
.
get_weights
()
for
left
,
right
in
zip
(
before_weights
,
after_weights
):
self
.
assertAllEqual
(
left
,
right
)
def
test_parse_configuration
(
self
):
model_dir
=
self
.
get_temp_dir
()
flags_dict
=
dict
(
experiment
=
'mock'
,
mode
=
'train'
,
model_dir
=
model_dir
,
params_override
=
json
.
dumps
(
self
.
_test_config
))
with
flagsaver
.
flagsaver
(
**
flags_dict
):
params
=
train_utils
.
parse_configuration
(
flags
.
FLAGS
,
lock_return
=
True
)
with
self
.
assertRaises
(
ValueError
):
params
.
override
({
'task'
:
{
'init_checkpoint'
:
'Foo'
}})
params
=
train_utils
.
parse_configuration
(
flags
.
FLAGS
,
lock_return
=
False
)
params
.
override
({
'task'
:
{
'init_checkpoint'
:
'Bar'
}})
self
.
assertEqual
(
params
.
task
.
init_checkpoint
,
'Bar'
)
if
__name__
==
'__main__'
:
tf
.
test
.
main
()
TensorFlow2x/ComputeVision/Classification/models-master/official/core/train_utils.py
0 → 100644
View file @
a32ffa95
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Training utils."""
import
copy
import
json
import
os
import
pprint
from
typing
import
Any
,
Callable
,
Dict
,
List
,
Optional
,
Union
from
absl
import
logging
import
dataclasses
import
gin
import
orbit
import
tensorflow
as
tf
# pylint: disable=g-direct-tensorflow-import
from
tensorflow.python.framework.convert_to_constants
import
convert_variables_to_constants_v2_as_graph
# pylint: enable=g-direct-tensorflow-import
from
official.core
import
base_task
from
official.core
import
base_trainer
from
official.core
import
config_definitions
from
official.core
import
exp_factory
from
official.modeling
import
hyperparams
def
get_leaf_nested_dict
(
d
:
Dict
[
str
,
Any
],
keys
:
List
[
str
])
->
Dict
[
str
,
Any
]:
"""Get leaf from a dictionary with arbitrary depth with a list of keys.
Args:
d: The dictionary to extract value from.
keys: The list of keys to extract values recursively.
Returns:
The value of the leaf.
Raises:
KeyError: If the value of keys extracted is a dictionary.
"""
leaf
=
d
for
k
in
keys
:
if
not
isinstance
(
leaf
,
dict
)
or
k
not
in
leaf
:
raise
KeyError
(
'Path not exist while traversing the dictionary: d with keys'
': %s.'
%
keys
)
leaf
=
leaf
[
k
]
if
isinstance
(
leaf
,
dict
):
raise
KeyError
(
'The value extracted with keys: %s is not a leaf of the '
'dictionary: %s.'
%
(
keys
,
d
))
return
leaf
def
cast_leaf_nested_dict
(
d
:
Dict
[
str
,
Any
],
cast_fn
:
Callable
[[
Any
],
Any
])
->
Dict
[
str
,
Any
]:
"""Cast the leaves of a dictionary with arbitrary depth in place.
Args:
d: The dictionary to extract value from.
cast_fn: The casting function.
Returns:
A dictionray with the same structure as d.
"""
for
key
,
value
in
d
.
items
():
if
isinstance
(
value
,
dict
):
d
[
key
]
=
cast_leaf_nested_dict
(
value
,
cast_fn
)
else
:
d
[
key
]
=
cast_fn
(
value
)
return
d
def
maybe_create_best_ckpt_exporter
(
params
:
config_definitions
.
ExperimentConfig
,
data_dir
:
str
)
->
Any
:
"""Maybe create a BestCheckpointExporter object, according to the config."""
export_subdir
=
params
.
trainer
.
best_checkpoint_export_subdir
metric_name
=
params
.
trainer
.
best_checkpoint_eval_metric
metric_comp
=
params
.
trainer
.
best_checkpoint_metric_comp
if
data_dir
and
export_subdir
and
metric_name
:
best_ckpt_dir
=
os
.
path
.
join
(
data_dir
,
export_subdir
)
best_ckpt_exporter
=
BestCheckpointExporter
(
best_ckpt_dir
,
metric_name
,
metric_comp
)
logging
.
info
(
'Created the best checkpoint exporter. '
'data_dir: %s, export_subdir: %s, metric_name: %s'
,
data_dir
,
export_subdir
,
metric_name
)
else
:
best_ckpt_exporter
=
None
return
best_ckpt_exporter
# TODO(b/180147589): Add tests for this module.
class
BestCheckpointExporter
:
"""Keeps track of the best result, and saves its checkpoint.
Orbit will support an API for checkpoint exporter. This class will be used
together with orbit once this functionality is ready.
"""
def
__init__
(
self
,
export_dir
:
str
,
metric_name
:
str
,
metric_comp
:
str
):
"""Initialization.
Args:
export_dir: The directory that will contain exported checkpoints.
metric_name: Indicates which metric to look at, when determining which
result is better. If eval_logs being passed to maybe_export_checkpoint
is a nested dictionary, use `|` as a seperator for different layers.
metric_comp: Indicates how to compare results. Either `lower` or `higher`.
"""
self
.
_export_dir
=
export_dir
self
.
_metric_name
=
metric_name
.
split
(
'|'
)
self
.
_metric_comp
=
metric_comp
if
self
.
_metric_comp
not
in
(
'lower'
,
'higher'
):
raise
ValueError
(
'best checkpoint metric comp must be one of '
'higher, lower. Got: {}'
.
format
(
self
.
_metric_comp
))
tf
.
io
.
gfile
.
makedirs
(
os
.
path
.
dirname
(
self
.
best_ckpt_logs_path
))
self
.
_best_ckpt_logs
=
self
.
_maybe_load_best_eval_metric
()
self
.
_checkpoint_manager
=
None
def
_get_checkpoint_manager
(
self
,
checkpoint
):
"""Gets an existing checkpoint manager or creates a new one."""
if
self
.
_checkpoint_manager
is
None
or
(
self
.
_checkpoint_manager
.
checkpoint
!=
checkpoint
):
logging
.
info
(
'Creates a new checkpoint manager.'
)
self
.
_checkpoint_manager
=
tf
.
train
.
CheckpointManager
(
checkpoint
,
directory
=
self
.
_export_dir
,
max_to_keep
=
1
,
checkpoint_name
=
'best_ckpt'
)
return
self
.
_checkpoint_manager
def
maybe_export_checkpoint
(
self
,
checkpoint
,
eval_logs
,
global_step
,
write_logs
=
True
)
->
bool
:
"""Compare eval_logs with past eval_logs and export checkpoint if better."""
logging
.
info
(
'[BestCheckpointExporter] received eval_logs: %s, at step: %d'
,
eval_logs
,
global_step
)
if
self
.
_best_ckpt_logs
is
None
or
self
.
_new_metric_is_better
(
self
.
_best_ckpt_logs
,
eval_logs
):
self
.
_best_ckpt_logs
=
eval_logs
if
write_logs
:
self
.
export_best_eval_metric
(
self
.
_best_ckpt_logs
,
global_step
)
self
.
_get_checkpoint_manager
(
checkpoint
).
save
()
return
True
return
False
def
_maybe_load_best_eval_metric
(
self
):
if
not
tf
.
io
.
gfile
.
exists
(
self
.
best_ckpt_logs_path
):
return
None
with
tf
.
io
.
gfile
.
GFile
(
self
.
best_ckpt_logs_path
,
'r'
)
as
reader
:
return
json
.
loads
(
reader
.
read
())
def
_new_metric_is_better
(
self
,
old_logs
,
new_logs
):
"""Check if the metric in new_logs is better than the metric in old_logs."""
old_value
=
float
(
orbit
.
utils
.
get_value
(
get_leaf_nested_dict
(
old_logs
,
self
.
_metric_name
)))
new_value
=
float
(
orbit
.
utils
.
get_value
(
get_leaf_nested_dict
(
new_logs
,
self
.
_metric_name
)))
logging
.
info
(
'[BestCheckpointExporter] comparing results. old: %f, new: %f'
,
old_value
,
new_value
)
if
self
.
_metric_comp
==
'higher'
:
if
new_value
>
old_value
:
logging
.
info
(
'[BestCheckpointExporter] '
'the new number is better since it is higher.'
)
return
True
else
:
# self._metric_comp == 'lower':
if
new_value
<
old_value
:
logging
.
info
(
'[BestCheckpointExporter] '
'the new number is better since it is lower.'
)
return
True
return
False
def
export_best_eval_metric
(
self
,
eval_logs
,
global_step
):
"""Export evaluation results of the best checkpoint into a json file."""
eval_logs_ext
=
copy
.
copy
(
eval_logs
)
eval_logs_ext
[
'best_ckpt_global_step'
]
=
global_step
eval_logs_ext
=
cast_leaf_nested_dict
(
eval_logs_ext
,
lambda
x
:
float
(
orbit
.
utils
.
get_value
(
x
)))
# Saving json file is very fast.
with
tf
.
io
.
gfile
.
GFile
(
self
.
best_ckpt_logs_path
,
'w'
)
as
writer
:
writer
.
write
(
json
.
dumps
(
eval_logs_ext
,
indent
=
4
)
+
'
\n
'
)
@
property
def
best_ckpt_logs
(
self
):
return
self
.
_best_ckpt_logs
@
property
def
best_ckpt_logs_path
(
self
):
return
os
.
path
.
join
(
self
.
_export_dir
,
'info.json'
)
@
property
def
best_ckpt_path
(
self
):
"""Returns the best ckpt path or None if there is no ckpt yet."""
return
tf
.
train
.
latest_checkpoint
(
self
.
_export_dir
)
@
gin
.
configurable
def
create_trainer
(
params
:
config_definitions
.
ExperimentConfig
,
task
:
base_task
.
Task
,
train
:
bool
,
evaluate
:
bool
,
checkpoint_exporter
:
Optional
[
BestCheckpointExporter
]
=
None
,
trainer_cls
=
base_trainer
.
Trainer
)
->
base_trainer
.
Trainer
:
"""Create trainer."""
logging
.
info
(
'Running default trainer.'
)
model
=
task
.
build_model
()
optimizer
=
task
.
create_optimizer
(
params
.
trainer
.
optimizer_config
,
params
.
runtime
)
return
trainer_cls
(
params
,
task
,
model
=
model
,
optimizer
=
optimizer
,
train
=
train
,
evaluate
=
evaluate
,
checkpoint_exporter
=
checkpoint_exporter
)
@
dataclasses
.
dataclass
class
ParseConfigOptions
:
"""Use this dataclass instead of FLAGS to customize parse_configuration()."""
experiment
:
str
config_file
:
List
[
str
]
tpu
:
str
=
''
tf_data_service
:
str
=
''
params_override
:
str
=
''
def
__contains__
(
self
,
name
):
return
name
in
dataclasses
.
asdict
(
self
)
def
parse_configuration
(
flags_obj
,
lock_return
=
True
,
print_return
=
True
):
"""Parses ExperimentConfig from flags."""
if
flags_obj
.
experiment
is
None
:
raise
ValueError
(
'The flag --experiment must be specified.'
)
# 1. Get the default config from the registered experiment.
params
=
exp_factory
.
get_exp_config
(
flags_obj
.
experiment
)
# 2. Get the first level of override from `--config_file`.
# `--config_file` is typically used as a template that specifies the common
# override for a particular experiment.
for
config_file
in
flags_obj
.
config_file
or
[]:
params
=
hyperparams
.
override_params_dict
(
params
,
config_file
,
is_strict
=
True
)
# 3. Override the TPU address and tf.data service address.
params
.
override
({
'runtime'
:
{
'tpu'
:
flags_obj
.
tpu
,
},
})
if
(
'tf_data_service'
in
flags_obj
and
flags_obj
.
tf_data_service
and
isinstance
(
params
.
task
,
config_definitions
.
TaskConfig
)):
params
.
override
({
'task'
:
{
'train_data'
:
{
'tf_data_service_address'
:
flags_obj
.
tf_data_service
,
},
'validation_data'
:
{
'tf_data_service_address'
:
flags_obj
.
tf_data_service
,
}
}
})
# 4. Get the second level of override from `--params_override`.
# `--params_override` is typically used as a further override over the
# template. For example, one may define a particular template for training
# ResNet50 on ImageNet in a config file and pass it via `--config_file`,
# then define different learning rates and pass it via `--params_override`.
if
flags_obj
.
params_override
:
params
=
hyperparams
.
override_params_dict
(
params
,
flags_obj
.
params_override
,
is_strict
=
True
)
params
.
validate
()
if
lock_return
:
params
.
lock
()
if
print_return
:
pp
=
pprint
.
PrettyPrinter
()
logging
.
info
(
'Final experiment parameters:
\n
%s'
,
pp
.
pformat
(
params
.
as_dict
()))
return
params
def
serialize_config
(
params
:
config_definitions
.
ExperimentConfig
,
model_dir
:
str
):
"""Serializes and saves the experiment config."""
if
model_dir
is
None
:
raise
ValueError
(
'model_dir must be specified, but got None'
)
params_save_path
=
os
.
path
.
join
(
model_dir
,
'params.yaml'
)
logging
.
info
(
'Saving experiment configuration to %s'
,
params_save_path
)
tf
.
io
.
gfile
.
makedirs
(
model_dir
)
hyperparams
.
save_params_dict_to_yaml
(
params
,
params_save_path
)
def
save_gin_config
(
filename_suffix
:
str
,
model_dir
:
str
):
"""Serializes and saves the experiment config."""
gin_save_path
=
os
.
path
.
join
(
model_dir
,
'operative_config.{}.gin'
.
format
(
filename_suffix
))
logging
.
info
(
'Saving gin configurations to %s'
,
gin_save_path
)
tf
.
io
.
gfile
.
makedirs
(
model_dir
)
with
tf
.
io
.
gfile
.
GFile
(
gin_save_path
,
'w'
)
as
f
:
f
.
write
(
gin
.
operative_config_str
())
def
read_global_step_from_checkpoint
(
ckpt_file_path
):
"""Read global step from checkpoint, or get global step from its filename."""
global_step
=
tf
.
Variable
(
-
1
,
dtype
=
tf
.
int64
)
ckpt
=
tf
.
train
.
Checkpoint
(
global_step
=
global_step
)
try
:
ckpt
.
restore
(
ckpt_file_path
).
expect_partial
()
global_step_maybe_restored
=
global_step
.
numpy
()
except
tf
.
errors
.
InvalidArgumentError
:
global_step_maybe_restored
=
-
1
if
global_step_maybe_restored
==
-
1
:
raise
ValueError
(
'global_step not found in checkpoint {}. '
'If you want to run finetune eval jobs, you need to '
'make sure that your pretrain model writes '
'global_step in its checkpoints.'
.
format
(
ckpt_file_path
))
global_step_restored
=
global_step
.
numpy
()
logging
.
info
(
'get global_step %d from checkpoint %s'
,
global_step_restored
,
ckpt_file_path
)
return
global_step_restored
def
write_json_summary
(
log_dir
,
global_step
,
eval_metrics
):
"""Dump evaluation metrics to json file."""
serializable_dict
=
{}
for
name
,
value
in
eval_metrics
.
items
():
if
hasattr
(
value
,
'numpy'
):
serializable_dict
[
name
]
=
str
(
value
.
numpy
())
else
:
serializable_dict
[
name
]
=
str
(
value
)
output_json
=
os
.
path
.
join
(
log_dir
,
'metrics-{}.json'
.
format
(
global_step
))
logging
.
info
(
'Evaluation results at pretrain step %d: %s'
,
global_step
,
serializable_dict
)
with
tf
.
io
.
gfile
.
GFile
(
output_json
,
'w'
)
as
writer
:
writer
.
write
(
json
.
dumps
(
serializable_dict
,
indent
=
4
)
+
'
\n
'
)
def
write_summary
(
summary_writer
,
global_step
,
eval_metrics
):
"""Write evaluation metrics to TF summary."""
numeric_dict
=
{}
for
name
,
value
in
eval_metrics
.
items
():
numeric_dict
[
name
]
=
float
(
orbit
.
utils
.
get_value
(
value
))
with
summary_writer
.
as_default
():
for
name
,
value
in
numeric_dict
.
items
():
tf
.
summary
.
scalar
(
name
,
value
,
step
=
global_step
)
summary_writer
.
flush
()
def
remove_ckpts
(
model_dir
):
"""Remove model checkpoints, so we can restart."""
ckpts
=
os
.
path
.
join
(
model_dir
,
'ckpt-*'
)
logging
.
info
(
'removing checkpoint files %s'
,
ckpts
)
for
file_to_remove
in
tf
.
io
.
gfile
.
glob
(
ckpts
):
tf
.
io
.
gfile
.
rmtree
(
file_to_remove
)
file_to_remove
=
os
.
path
.
join
(
model_dir
,
'checkpoint'
)
if
tf
.
io
.
gfile
.
exists
(
file_to_remove
):
tf
.
io
.
gfile
.
remove
(
file_to_remove
)
def
write_model_params
(
model
:
Union
[
tf
.
Module
,
tf
.
keras
.
Model
],
output_path
:
str
)
->
None
:
"""Writes the model parameters and shapes to a file.
Args:
model: A model instance.
output_path: Output file path.
"""
with
tf
.
io
.
gfile
.
GFile
(
output_path
,
'w'
)
as
f
:
total_params
=
0
for
var
in
model
.
variables
:
shape
=
tf
.
shape
(
var
)
total_params
+=
tf
.
math
.
reduce_prod
(
shape
).
numpy
()
f
.
write
(
f
'
{
var
.
name
}
{
shape
.
numpy
().
tolist
()
}
\n
'
)
f
.
write
(
f
'
\n
Total params:
{
total_params
}
\n
'
)
def
try_count_params
(
model
:
Union
[
tf
.
Module
,
tf
.
keras
.
Model
],
trainable_only
:
bool
=
False
):
"""Count the number of parameters if model is possible.
Args:
model: Try to count the number of params in this model.
trainable_only: Whether to calculate trainable params only. This flag is
not used when the model has `count_params` attribute.
Returns:
The number of parameters or None.
"""
if
hasattr
(
model
,
'count_params'
):
try
:
return
model
.
count_params
()
except
ValueError
:
logging
.
info
(
'Number of trainable params unknown, because the build() '
'methods in keras layers were not called. This is probably '
'because the model was not feed any input, e.g., the max '
'train step already reached before this run.'
)
return
None
else
:
total_params
=
0
variables
=
model
.
trainable_variables
if
trainable_only
else
model
.
variables
for
var
in
variables
:
shape
=
tf
.
shape
(
var
)
total_params
+=
tf
.
math
.
reduce_prod
(
shape
).
numpy
()
return
total_params
def
try_count_flops
(
model
:
Union
[
tf
.
Module
,
tf
.
keras
.
Model
],
inputs_kwargs
:
Optional
[
Dict
[
str
,
Any
]]
=
None
,
output_path
:
Optional
[
str
]
=
None
):
"""Counts and returns model FLOPs.
Args:
model: A model instance.
inputs_kwargs: An optional dictionary of argument pairs specifying inputs'
shape specifications to getting corresponding concrete function.
output_path: A file path to write the profiling results to.
Returns:
The model's FLOPs.
"""
if
hasattr
(
model
,
'inputs'
):
try
:
# Get input shape and set batch size to 1.
if
model
.
inputs
:
inputs
=
[
tf
.
TensorSpec
([
1
]
+
input
.
shape
[
1
:],
input
.
dtype
)
for
input
in
model
.
inputs
]
concrete_func
=
tf
.
function
(
model
).
get_concrete_function
(
inputs
)
# If model.inputs is invalid, try to use the input to get concrete
# function for model.call (subclass model).
else
:
concrete_func
=
tf
.
function
(
model
.
call
).
get_concrete_function
(
**
inputs_kwargs
)
frozen_func
,
_
=
convert_variables_to_constants_v2_as_graph
(
concrete_func
)
# Calculate FLOPs.
run_meta
=
tf
.
compat
.
v1
.
RunMetadata
()
opts
=
tf
.
compat
.
v1
.
profiler
.
ProfileOptionBuilder
.
float_operation
()
if
output_path
is
not
None
:
opts
[
'output'
]
=
f
'file:outfile=
{
output_path
}
'
else
:
opts
[
'output'
]
=
'none'
flops
=
tf
.
compat
.
v1
.
profiler
.
profile
(
graph
=
frozen_func
.
graph
,
run_meta
=
run_meta
,
options
=
opts
)
return
flops
.
total_float_ops
except
Exception
as
e
:
# pylint: disable=broad-except
logging
.
info
(
'Failed to count model FLOPs with error %s, because the build() '
'methods in keras layers were not called. This is probably because '
'the model was not feed any input, e.g., the max train step already '
'reached before this run.'
,
e
)
return
None
return
None
TensorFlow2x/ComputeVision/Classification/models-master/official/core/train_utils_test.py
0 → 100644
View file @
a32ffa95
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for official.core.train_utils."""
import
os
import
numpy
as
np
import
tensorflow
as
tf
from
official.core
import
test_utils
from
official.core
import
train_utils
class
TrainUtilsTest
(
tf
.
test
.
TestCase
):
def
test_get_leaf_nested_dict
(
self
):
d
=
{
'a'
:
{
'i'
:
{
'x'
:
5
}}}
self
.
assertEqual
(
train_utils
.
get_leaf_nested_dict
(
d
,
[
'a'
,
'i'
,
'x'
]),
5
)
def
test_get_leaf_nested_dict_not_leaf
(
self
):
with
self
.
assertRaisesRegex
(
KeyError
,
'The value extracted with keys.*'
):
d
=
{
'a'
:
{
'i'
:
{
'x'
:
5
}}}
train_utils
.
get_leaf_nested_dict
(
d
,
[
'a'
,
'i'
])
def
test_get_leaf_nested_dict_path_not_exist_missing_key
(
self
):
with
self
.
assertRaisesRegex
(
KeyError
,
'Path not exist while traversing .*'
):
d
=
{
'a'
:
{
'i'
:
{
'x'
:
5
}}}
train_utils
.
get_leaf_nested_dict
(
d
,
[
'a'
,
'i'
,
'y'
])
def
test_get_leaf_nested_dict_path_not_exist_out_of_range
(
self
):
with
self
.
assertRaisesRegex
(
KeyError
,
'Path not exist while traversing .*'
):
d
=
{
'a'
:
{
'i'
:
{
'x'
:
5
}}}
train_utils
.
get_leaf_nested_dict
(
d
,
[
'a'
,
'i'
,
'z'
])
def
test_get_leaf_nested_dict_path_not_exist_meets_leaf
(
self
):
with
self
.
assertRaisesRegex
(
KeyError
,
'Path not exist while traversing .*'
):
d
=
{
'a'
:
{
'i'
:
5
}}
train_utils
.
get_leaf_nested_dict
(
d
,
[
'a'
,
'i'
,
'z'
])
def
test_cast_leaf_nested_dict
(
self
):
d
=
{
'a'
:
{
'i'
:
{
'x'
:
'123'
}},
'b'
:
456.5
}
d
=
train_utils
.
cast_leaf_nested_dict
(
d
,
int
)
self
.
assertEqual
(
d
[
'a'
][
'i'
][
'x'
],
123
)
self
.
assertEqual
(
d
[
'b'
],
456
)
def
test_write_model_params_keras_model
(
self
):
inputs
=
np
.
zeros
([
2
,
3
])
model
=
test_utils
.
FakeKerasModel
()
model
(
inputs
)
# Must do forward pass to build the model.
filepath
=
os
.
path
.
join
(
self
.
create_tempdir
(),
'model_params.txt'
)
train_utils
.
write_model_params
(
model
,
filepath
)
actual
=
tf
.
io
.
gfile
.
GFile
(
filepath
,
'r'
).
read
().
splitlines
()
expected
=
[
'fake_keras_model/dense/kernel:0 [3, 4]'
,
'fake_keras_model/dense/bias:0 [4]'
,
'fake_keras_model/dense_1/kernel:0 [4, 4]'
,
'fake_keras_model/dense_1/bias:0 [4]'
,
''
,
'Total params: 36'
,
]
self
.
assertEqual
(
actual
,
expected
)
def
test_write_model_params_module
(
self
):
inputs
=
np
.
zeros
([
2
,
3
],
dtype
=
np
.
float32
)
model
=
test_utils
.
FakeModule
(
3
,
name
=
'fake_module'
)
model
(
inputs
)
# Must do forward pass to build the model.
filepath
=
os
.
path
.
join
(
self
.
create_tempdir
(),
'model_params.txt'
)
train_utils
.
write_model_params
(
model
,
filepath
)
actual
=
tf
.
io
.
gfile
.
GFile
(
filepath
,
'r'
).
read
().
splitlines
()
expected
=
[
'fake_module/dense/b:0 [4]'
,
'fake_module/dense/w:0 [3, 4]'
,
'fake_module/dense_1/b:0 [4]'
,
'fake_module/dense_1/w:0 [4, 4]'
,
''
,
'Total params: 36'
,
]
self
.
assertEqual
(
actual
,
expected
)
if
__name__
==
'__main__'
:
tf
.
test
.
main
()
TensorFlow2x/ComputeVision/Classification/models-master/official/modeling/__init__.py
0 → 100644
View file @
a32ffa95
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
TensorFlow2x/ComputeVision/Classification/models-master/official/modeling/activations/__init__.py
0 → 100644
View file @
a32ffa95
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Activations package definition."""
from
official.modeling.activations.gelu
import
gelu
from
official.modeling.activations.relu
import
relu6
from
official.modeling.activations.sigmoid
import
hard_sigmoid
from
official.modeling.activations.swish
import
hard_swish
from
official.modeling.activations.swish
import
identity
from
official.modeling.activations.swish
import
simple_swish
TensorFlow2x/ComputeVision/Classification/models-master/official/modeling/activations/gelu.py
0 → 100644
View file @
a32ffa95
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Gaussian error linear unit."""
import
tensorflow
as
tf
@
tf
.
keras
.
utils
.
register_keras_serializable
(
package
=
'Text'
)
def
gelu
(
x
):
"""Gaussian Error Linear Unit.
This is a smoother version of the RELU.
Original paper: https://arxiv.org/abs/1606.08415
Args:
x: float Tensor to perform activation.
Returns:
`x` with the GELU activation applied.
"""
return
tf
.
keras
.
activations
.
gelu
(
x
,
approximate
=
True
)
TensorFlow2x/ComputeVision/Classification/models-master/official/modeling/activations/gelu_test.py
0 → 100644
View file @
a32ffa95
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for the Gaussian error linear unit."""
import
tensorflow
as
tf
from
tensorflow.python.keras
import
keras_parameterized
# pylint: disable=g-direct-tensorflow-import
from
official.modeling
import
activations
@
keras_parameterized
.
run_all_keras_modes
class
GeluTest
(
keras_parameterized
.
TestCase
):
def
test_gelu
(
self
):
expected_data
=
[[
0.14967535
,
0.
,
-
0.10032465
],
[
-
0.15880796
,
-
0.04540223
,
2.9963627
]]
gelu_data
=
activations
.
gelu
([[.
25
,
0
,
-
.
25
],
[
-
1
,
-
2
,
3
]])
self
.
assertAllClose
(
expected_data
,
gelu_data
)
if
__name__
==
'__main__'
:
tf
.
test
.
main
()
Prev
1
…
5
6
7
8
9
10
11
12
13
14
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment