Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
dcuai
dlexamples
Commits
85529f35
Commit
85529f35
authored
Jul 30, 2022
by
unknown
Browse files
添加openmmlab测试用例
parent
b21b0c01
Changes
977
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
315 additions
and
0 deletions
+315
-0
openmmlab_test/mmclassification-speed-benchmark/configs/resnext/resnext101_32x4d_b32x8_imagenet.py
...chmark/configs/resnext/resnext101_32x4d_b32x8_imagenet.py
+5
-0
openmmlab_test/mmclassification-speed-benchmark/configs/resnext/resnext101_32x8d_b32x8_imagenet.py
...chmark/configs/resnext/resnext101_32x8d_b32x8_imagenet.py
+5
-0
openmmlab_test/mmclassification-speed-benchmark/configs/resnext/resnext152_32x4d_b32x8_imagenet.py
...chmark/configs/resnext/resnext152_32x4d_b32x8_imagenet.py
+5
-0
openmmlab_test/mmclassification-speed-benchmark/configs/resnext/resnext50_32x4d_b32x8_imagenet.py
...nchmark/configs/resnext/resnext50_32x4d_b32x8_imagenet.py
+5
-0
openmmlab_test/mmclassification-speed-benchmark/configs/seresnet/README.md
...classification-speed-benchmark/configs/seresnet/README.md
+24
-0
openmmlab_test/mmclassification-speed-benchmark/configs/seresnet/metafile.yml
...ssification-speed-benchmark/configs/seresnet/metafile.yml
+42
-0
openmmlab_test/mmclassification-speed-benchmark/configs/seresnet/seresnet101_b32x8_imagenet.py
...-benchmark/configs/seresnet/seresnet101_b32x8_imagenet.py
+5
-0
openmmlab_test/mmclassification-speed-benchmark/configs/seresnet/seresnet50_b32x8_imagenet.py
...d-benchmark/configs/seresnet/seresnet50_b32x8_imagenet.py
+6
-0
openmmlab_test/mmclassification-speed-benchmark/configs/seresnext/README.md
...lassification-speed-benchmark/configs/seresnext/README.md
+15
-0
openmmlab_test/mmclassification-speed-benchmark/configs/seresnext/seresnext101_32x4d_b32x8_imagenet.py
...rk/configs/seresnext/seresnext101_32x4d_b32x8_imagenet.py
+5
-0
openmmlab_test/mmclassification-speed-benchmark/configs/seresnext/seresnext50_32x4d_b32x8_imagenet.py
...ark/configs/seresnext/seresnext50_32x4d_b32x8_imagenet.py
+5
-0
openmmlab_test/mmclassification-speed-benchmark/configs/shufflenet_v1/README.md
...ification-speed-benchmark/configs/shufflenet_v1/README.md
+23
-0
openmmlab_test/mmclassification-speed-benchmark/configs/shufflenet_v1/metafile.yml
...cation-speed-benchmark/configs/shufflenet_v1/metafile.yml
+30
-0
openmmlab_test/mmclassification-speed-benchmark/configs/shufflenet_v1/shufflenet_v1_1x_b64x16_linearlr_bn_nowd_imagenet.py
...t_v1/shufflenet_v1_1x_b64x16_linearlr_bn_nowd_imagenet.py
+6
-0
openmmlab_test/mmclassification-speed-benchmark/configs/shufflenet_v2/README.md
...ification-speed-benchmark/configs/shufflenet_v2/README.md
+23
-0
openmmlab_test/mmclassification-speed-benchmark/configs/shufflenet_v2/metafile.yml
...cation-speed-benchmark/configs/shufflenet_v2/metafile.yml
+30
-0
openmmlab_test/mmclassification-speed-benchmark/configs/shufflenet_v2/shufflenet_v2_1x_b64x16_linearlr_bn_nowd_imagenet.py
...t_v2/shufflenet_v2_1x_b64x16_linearlr_bn_nowd_imagenet.py
+6
-0
openmmlab_test/mmclassification-speed-benchmark/configs/speed_test/AlexNet.py
...ssification-speed-benchmark/configs/speed_test/AlexNet.py
+5
-0
openmmlab_test/mmclassification-speed-benchmark/configs/speed_test/datasets/imagenet_bs32.py
...ed-benchmark/configs/speed_test/datasets/imagenet_bs32.py
+35
-0
openmmlab_test/mmclassification-speed-benchmark/configs/speed_test/datasets/imagenet_bs64.py
...ed-benchmark/configs/speed_test/datasets/imagenet_bs64.py
+35
-0
No files found.
Too many changes to show.
To preserve performance only
977 of 977+
files are displayed.
Plain diff
Email patch
openmmlab_test/mmclassification-speed-benchmark/configs/resnext/resnext101_32x4d_b32x8_imagenet.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/resnext101_32x4d.py'
,
'../_base_/datasets/imagenet_bs32_pil_resize.py'
,
'../_base_/schedules/imagenet_bs256.py'
,
'../_base_/default_runtime.py'
]
openmmlab_test/mmclassification-speed-benchmark/configs/resnext/resnext101_32x8d_b32x8_imagenet.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/resnext101_32x8d.py'
,
'../_base_/datasets/imagenet_bs32_pil_resize.py'
,
'../_base_/schedules/imagenet_bs256.py'
,
'../_base_/default_runtime.py'
]
openmmlab_test/mmclassification-speed-benchmark/configs/resnext/resnext152_32x4d_b32x8_imagenet.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/resnext152_32x4d.py'
,
'../_base_/datasets/imagenet_bs32_pil_resize.py'
,
'../_base_/schedules/imagenet_bs256.py'
,
'../_base_/default_runtime.py'
]
openmmlab_test/mmclassification-speed-benchmark/configs/resnext/resnext50_32x4d_b32x8_imagenet.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/resnext50_32x4d.py'
,
'../_base_/datasets/imagenet_bs32_pil_resize.py'
,
'../_base_/schedules/imagenet_bs256.py'
,
'../_base_/default_runtime.py'
]
openmmlab_test/mmclassification-speed-benchmark/configs/seresnet/README.md
0 → 100644
View file @
85529f35
# Squeeze-and-Excitation Networks
## Introduction
<!-- [ALGORITHM] -->
```
latex
@inproceedings
{
hu2018squeeze,
title=
{
Squeeze-and-excitation networks
}
,
author=
{
Hu, Jie and Shen, Li and Sun, Gang
}
,
booktitle=
{
Proceedings of the IEEE conference on computer vision and pattern recognition
}
,
pages=
{
7132--7141
}
,
year=
{
2018
}
}
```
## Results and models
### ImageNet
| Model | Params(M) | Flops(G) | Top-1 (%) | Top-5 (%) | Config | Download |
|:---------------------:|:---------:|:--------:|:---------:|:---------:|:---------:|:--------:|
| SE-ResNet-50 | 28.09 | 4.13 | 77.74 | 93.84 |
[
config
](
https://github.com/open-mmlab/mmclassification/blob/master/configs/seresnet50/seresnet50_b32x8_imagenet.py
)
|
[
model
](
https://download.openmmlab.com/mmclassification/v0/se-resnet/se-resnet50_batch256_imagenet_20200804-ae206104.pth
)
|
[
log
](
https://download.openmmlab.com/mmclassification/v0/se-resnet/se-resnet50_batch256_imagenet_20200708-657b3c36.log.json
)
|
| SE-ResNet-101 | 49.33 | 7.86 | 78.26 | 94.07 |
[
config
](
https://github.com/open-mmlab/mmclassification/blob/master/configs/seresnet101/seresnet101_b32x8_imagenet.py
)
|
[
model
](
https://download.openmmlab.com/mmclassification/v0/se-resnet/se-resnet101_batch256_imagenet_20200804-ba5b51d4.pth
)
|
[
log
](
https://download.openmmlab.com/mmclassification/v0/se-resnet/se-resnet101_batch256_imagenet_20200708-038a4d04.log.json
)
|
openmmlab_test/mmclassification-speed-benchmark/configs/seresnet/metafile.yml
0 → 100644
View file @
85529f35
Collections
:
-
Name
:
SEResNet
Metadata
:
Training Data
:
ImageNet
Training Techniques
:
-
SGD with Momentum
-
Weight Decay
Training Resources
:
8x V100 GPUs
Epochs
:
140
Batch Size
:
256
Architecture
:
-
ResNet
Paper
:
https://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html
README
:
configs/seresnet/README.md
Models
:
-
Config
:
configs/seresnet50/seresnet50_b32x8_imagenet.py
In Collection
:
SEResNet
Metadata
:
FLOPs
:
4130000000
Parameters
:
28090000
Name
:
seresnet50_b32x8_imagenet
Results
:
-
Dataset
:
ImageNet
Metrics
:
Top 1 Accuracy
:
77.74
Top 5 Accuracy
:
93.84
Task
:
Image Classification
Weights
:
https://download.openmmlab.com/mmclassification/v0/se-resnet/se-resnet50_batch256_imagenet_20200804-ae206104.pth
-
Config
:
configs/seresnet101/seresnet101_b32x8_imagenet.py
In Collection
:
SEResNet
Metadata
:
FLOPs
:
7860000000
Parameters
:
49330000
Name
:
seresnet101_b32x8_imagenet
Results
:
-
Dataset
:
ImageNet
Metrics
:
Top 1 Accuracy
:
78.26
Top 5 Accuracy
:
94.07
Task
:
Image Classification
Weights
:
https://download.openmmlab.com/mmclassification/v0/se-resnet/se-resnet101_batch256_imagenet_20200804-ba5b51d4.pth
openmmlab_test/mmclassification-speed-benchmark/configs/seresnet/seresnet101_b32x8_imagenet.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/seresnet101.py'
,
'../_base_/datasets/imagenet_bs32_pil_resize.py'
,
'../_base_/schedules/imagenet_bs256.py'
,
'../_base_/default_runtime.py'
]
openmmlab_test/mmclassification-speed-benchmark/configs/seresnet/seresnet50_b32x8_imagenet.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/seresnet50.py'
,
'../_base_/datasets/imagenet_bs32_pil_resize.py'
,
'../_base_/schedules/imagenet_bs256_140e.py'
,
'../_base_/default_runtime.py'
]
openmmlab_test/mmclassification-speed-benchmark/configs/seresnext/README.md
0 → 100644
View file @
85529f35
# Squeeze-and-Excitation Networks
## Introduction
<!-- [ALGORITHM] -->
```
latex
@inproceedings
{
hu2018squeeze,
title=
{
Squeeze-and-excitation networks
}
,
author=
{
Hu, Jie and Shen, Li and Sun, Gang
}
,
booktitle=
{
Proceedings of the IEEE conference on computer vision and pattern recognition
}
,
pages=
{
7132--7141
}
,
year=
{
2018
}
}
```
openmmlab_test/mmclassification-speed-benchmark/configs/seresnext/seresnext101_32x4d_b32x8_imagenet.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/seresnext101_32x4d.py'
,
'../_base_/datasets/imagenet_bs32_pil_resize.py'
,
'../_base_/schedules/imagenet_bs256.py'
,
'../_base_/default_runtime.py'
]
openmmlab_test/mmclassification-speed-benchmark/configs/seresnext/seresnext50_32x4d_b32x8_imagenet.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/seresnext50_32x4d.py'
,
'../_base_/datasets/imagenet_bs32_pil_resize.py'
,
'../_base_/schedules/imagenet_bs256.py'
,
'../_base_/default_runtime.py'
]
openmmlab_test/mmclassification-speed-benchmark/configs/shufflenet_v1/README.md
0 → 100644
View file @
85529f35
# ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices
## Introduction
<!-- [ALGORITHM] -->
```
latex
@inproceedings
{
zhang2018shufflenet,
title=
{
Shufflenet: An extremely efficient convolutional neural network for mobile devices
}
,
author=
{
Zhang, Xiangyu and Zhou, Xinyu and Lin, Mengxiao and Sun, Jian
}
,
booktitle=
{
Proceedings of the IEEE conference on computer vision and pattern recognition
}
,
pages=
{
6848--6856
}
,
year=
{
2018
}
}
```
## Results and models
### ImageNet
| Model | Params(M) | Flops(G) | Top-1 (%) | Top-5 (%) | Config | Download |
|:---------------------:|:---------:|:--------:|:---------:|:---------:|:---------:|:--------:|
| ShuffleNetV1 1.0x (group=3) | 1.87 | 0.146 | 68.13 | 87.81 |
[
config
](
https://github.com/open-mmlab/mmclassification/blob/master/configs/shufflenet_v1/shufflenet_v1_1x_b64x16_linearlr_bn_nowd_imagenet.py
)
|
[
model
](
https://download.openmmlab.com/mmclassification/v0/shufflenet_v1/shufflenet_v1_batch1024_imagenet_20200804-5d6cec73.pth
)
|
[
log
](
https://download.openmmlab.com/mmclassification/v0/shufflenet_v1/shufflenet_v1_batch1024_imagenet_20200804-5d6cec73.log.json
)
|
openmmlab_test/mmclassification-speed-benchmark/configs/shufflenet_v1/metafile.yml
0 → 100644
View file @
85529f35
Collections
:
-
Name
:
Shufflenet V1
Metadata
:
Training Data
:
ImageNet
Training Techniques
:
-
SGD with Momentum
-
Weight Decay
-
No BN decay
Training Resources
:
8x 1080 GPUs
Epochs
:
300
Batch Size
:
1024
Architecture
:
-
Shufflenet V1
Paper
:
https://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_ShuffleNet_An_Extremely_CVPR_2018_paper.html
README
:
configs/shufflenet_v1/README.md
Models
:
-
Config
:
configs/shufflenet_v1/shufflenet_v1_1x_b64x16_linearlr_bn_nowd_imagenet.py
In Collection
:
Shufflenet V1
Metadata
:
FLOPs
:
146000000
Parameters
:
1870000
Name
:
shufflenet_v1_1x_b64x16_linearlr_bn_nowd_imagenet
Results
:
-
Dataset
:
ImageNet
Metrics
:
Top 1 Accuracy
:
68.13
Top 5 Accuracy
:
87.81
Task
:
Image Classification
Weights
:
https://download.openmmlab.com/mmclassification/v0/shufflenet_v1/shufflenet_v1_batch1024_imagenet_20200804-5d6cec73.pth
openmmlab_test/mmclassification-speed-benchmark/configs/shufflenet_v1/shufflenet_v1_1x_b64x16_linearlr_bn_nowd_imagenet.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/shufflenet_v1_1x.py'
,
'../_base_/datasets/imagenet_bs64_pil_resize.py'
,
'../_base_/schedules/imagenet_bs1024_linearlr_bn_nowd.py'
,
'../_base_/default_runtime.py'
]
openmmlab_test/mmclassification-speed-benchmark/configs/shufflenet_v2/README.md
0 → 100644
View file @
85529f35
# Shufflenet v2: Practical guidelines for efficient cnn architecture design
## Introduction
<!-- [ALGORITHM] -->
```
latex
@inproceedings
{
ma2018shufflenet,
title=
{
Shufflenet v2: Practical guidelines for efficient cnn architecture design
}
,
author=
{
Ma, Ningning and Zhang, Xiangyu and Zheng, Hai-Tao and Sun, Jian
}
,
booktitle=
{
Proceedings of the European conference on computer vision (ECCV)
}
,
pages=
{
116--131
}
,
year=
{
2018
}
}
```
## Results and models
### ImageNet
| Model | Params(M) | Flops(G) | Top-1 (%) | Top-5 (%) | Config | Download |
|:---------------------:|:---------:|:--------:|:---------:|:---------:|:---------:|:--------:|
| ShuffleNetV2 1.0x | 2.28 | 0.149 | 69.55 | 88.92 |
[
config
](
https://github.com/open-mmlab/mmclassification/blob/master/configs/shufflenet_v2/shufflenet_v2_1x_b64x16_linearlr_bn_nowd_imagenet.py
)
|
[
model
](
https://download.openmmlab.com/mmclassification/v0/shufflenet_v2/shufflenet_v2_batch1024_imagenet_20200812-5bf4721e.pth
)
|
[
log
](
https://download.openmmlab.com/mmclassification/v0/shufflenet_v2/shufflenet_v2_batch1024_imagenet_20200804-8860eec9.log.json
)
|
openmmlab_test/mmclassification-speed-benchmark/configs/shufflenet_v2/metafile.yml
0 → 100644
View file @
85529f35
Collections
:
-
Name
:
Shufflenet V2
Metadata
:
Training Data
:
ImageNet
Training Techniques
:
-
SGD with Momentum
-
Weight Decay
-
No BN decay
Training Resources
:
8x 1080 GPUs
Epochs
:
300
Batch Size
:
1024
Architecture
:
-
Shufflenet V2
Paper
:
https://openaccess.thecvf.com/content_ECCV_2018/papers/Ningning_Light-weight_CNN_Architecture_ECCV_2018_paper.pdf
README
:
configs/shufflenet_v2/README.md
Models
:
-
Config
:
configs/shufflenet_v2/shufflenet_v2_1x_b64x16_linearlr_bn_nowd_imagenet.py
In Collection
:
Shufflenet V2
Metadata
:
FLOPs
:
149000000
Parameters
:
2280000
Name
:
shufflenet_v2_1x_b64x16_linearlr_bn_nowd_imagenet
Results
:
-
Dataset
:
ImageNet
Metrics
:
Top 1 Accuracy
:
69.55
Top 5 Accuracy
:
88.92
Task
:
Image Classification
Weights
:
https://download.openmmlab.com/mmclassification/v0/shufflenet_v2/shufflenet_v2_batch1024_imagenet_20200812-5bf4721e.pth
openmmlab_test/mmclassification-speed-benchmark/configs/shufflenet_v2/shufflenet_v2_1x_b64x16_linearlr_bn_nowd_imagenet.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/shufflenet_v2_1x.py'
,
'../_base_/datasets/imagenet_bs64_pil_resize.py'
,
'../_base_/schedules/imagenet_bs1024_linearlr_bn_nowd.py'
,
'../_base_/default_runtime.py'
]
openmmlab_test/mmclassification-speed-benchmark/configs/speed_test/AlexNet.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/mobilenet_v2_1x.py'
,
'./datasets/imagenet_bs32.py'
,
'../_base_/schedules/imagenet_bs256_epochstep.py'
,
'../_base_/default_runtime.py'
]
openmmlab_test/mmclassification-speed-benchmark/configs/speed_test/datasets/imagenet_bs32.py
0 → 100644
View file @
85529f35
# dataset settings
dataset_type
=
'DummyImageNet'
img_norm_cfg
=
dict
(
mean
=
[
123.675
,
116.28
,
103.53
],
std
=
[
58.395
,
57.12
,
57.375
],
to_rgb
=
True
)
train_pipeline
=
[
dict
(
type
=
'RandomFlip'
,
flip_prob
=
0.5
,
direction
=
'horizontal'
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'ToTensor'
,
keys
=
[
'gt_label'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_label'
])
]
test_pipeline
=
[
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
])
]
data
=
dict
(
samples_per_gpu
=
128
,
workers_per_gpu
=
2
,
train
=
dict
(
type
=
dataset_type
,
data_prefix
=
'data/imagenet/train'
,
pipeline
=
train_pipeline
),
val
=
dict
(
type
=
dataset_type
,
data_prefix
=
'data/imagenet/val'
,
ann_file
=
'data/imagenet/meta/val.txt'
,
pipeline
=
test_pipeline
),
test
=
dict
(
# replace `data/val` with `data/test` for standard test
type
=
dataset_type
,
data_prefix
=
'data/imagenet/val'
,
ann_file
=
'data/imagenet/meta/val.txt'
,
pipeline
=
test_pipeline
))
evaluation
=
dict
(
interval
=
1
,
metric
=
'accuracy'
)
openmmlab_test/mmclassification-speed-benchmark/configs/speed_test/datasets/imagenet_bs64.py
0 → 100644
View file @
85529f35
# dataset settings
dataset_type
=
'DummyImageNet'
img_norm_cfg
=
dict
(
mean
=
[
123.675
,
116.28
,
103.53
],
std
=
[
58.395
,
57.12
,
57.375
],
to_rgb
=
True
)
train_pipeline
=
[
dict
(
type
=
'RandomFlip'
,
flip_prob
=
0.5
,
direction
=
'horizontal'
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'ToTensor'
,
keys
=
[
'gt_label'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_label'
])
]
test_pipeline
=
[
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
])
]
data
=
dict
(
samples_per_gpu
=
128
,
workers_per_gpu
=
2
,
train
=
dict
(
type
=
dataset_type
,
data_prefix
=
'data/imagenet/train'
,
pipeline
=
train_pipeline
),
val
=
dict
(
type
=
dataset_type
,
data_prefix
=
'data/imagenet/val'
,
ann_file
=
'data/imagenet/meta/val.txt'
,
pipeline
=
test_pipeline
),
test
=
dict
(
# replace `data/val` with `data/test` for standard test
type
=
dataset_type
,
data_prefix
=
'data/imagenet/val'
,
ann_file
=
'data/imagenet/meta/val.txt'
,
pipeline
=
test_pipeline
))
evaluation
=
dict
(
interval
=
1
,
metric
=
'accuracy'
)
Prev
1
…
4
5
6
7
8
9
10
11
12
…
49
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment