Commit 85529f35 authored by unknown's avatar unknown
Browse files

添加openmmlab测试用例

parent b21b0c01
_base_ = [
'../_base_/models/resnet18_cifar.py', '../_base_/datasets/cifar10_bs16.py',
'../_base_/schedules/cifar10_bs128.py', '../_base_/default_runtime.py'
]
_base_ = [
'../_base_/models/resnet18.py', '../_base_/datasets/imagenet_bs32.py',
'../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
]
_base_ = [
'../_base_/models/resnet34_cifar.py', '../_base_/datasets/cifar10_bs16.py',
'../_base_/schedules/cifar10_bs128.py', '../_base_/default_runtime.py'
]
_base_ = [
'../_base_/models/resnet34.py', '../_base_/datasets/imagenet_bs32.py',
'../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
]
_base_ = [
'../_base_/models/resnet50_cifar.py', '../_base_/datasets/cifar10_bs16.py',
'../_base_/schedules/cifar10_bs128.py', '../_base_/default_runtime.py'
]
_base_ = [
'../_base_/models/resnet50_cifar.py',
'../_base_/datasets/cifar100_bs16.py',
'../_base_/schedules/cifar10_bs128.py', '../_base_/default_runtime.py'
]
model = dict(head=dict(num_classes=100))
optimizer = dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0005)
lr_config = dict(policy='step', step=[60, 120, 160], gamma=0.2)
_base_ = [
'../_base_/models/resnet50_cifar_mixup.py',
'../_base_/datasets/cifar10_bs16.py',
'../_base_/schedules/cifar10_bs128.py', '../_base_/default_runtime.py'
]
_base_ = [
'../_base_/models/resnet50.py', '../_base_/datasets/imagenet_bs32.py',
'../_base_/schedules/imagenet_bs256_coslr.py',
'../_base_/default_runtime.py'
]
_base_ = [
'../_base_/models/resnet50_cutmix.py',
'../_base_/datasets/imagenet_bs32.py',
'../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
]
_base_ = [
'../_base_/models/resnet50.py', '../_base_/datasets/imagenet_bs32.py',
'../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
]
_base_ = [
'../_base_/models/resnet50_label_smooth.py',
'../_base_/datasets/imagenet_bs32.py',
'../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
]
_base_ = [
'../_base_/models/resnet50_mixup.py',
'../_base_/datasets/imagenet_bs32.py',
'../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
]
_base_ = [
'../_base_/models/resnet50.py', '../_base_/datasets/imagenet_bs64.py',
'../_base_/schedules/imagenet_bs2048_coslr.py',
'../_base_/default_runtime.py'
]
_base_ = [
'../_base_/models/resnet50.py', '../_base_/datasets/imagenet_bs64.py',
'../_base_/schedules/imagenet_bs2048.py', '../_base_/default_runtime.py'
]
_base_ = ['./resnet50_batch2048_warmup.py']
model = dict(
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=2048,
loss=dict(
type='LabelSmoothLoss',
loss_weight=1.0,
label_smooth_val=0.1,
num_classes=1000),
))
_base_ = [
'../_base_/models/resnetv1d101.py',
'../_base_/datasets/imagenet_bs32_pil_resize.py',
'../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
]
_base_ = [
'../_base_/models/resnetv1d152.py',
'../_base_/datasets/imagenet_bs32_pil_resize.py',
'../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
]
_base_ = [
'../_base_/models/resnetv1d50.py',
'../_base_/datasets/imagenet_bs32_pil_resize.py',
'../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
]
# Aggregated Residual Transformations for Deep Neural Networks
## Introduction
<!-- [ALGORITHM] -->
```latex
@inproceedings{xie2017aggregated,
title={Aggregated residual transformations for deep neural networks},
author={Xie, Saining and Girshick, Ross and Doll{\'a}r, Piotr and Tu, Zhuowen and He, Kaiming},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={1492--1500},
year={2017}
}
```
## Results and models
### ImageNet
| Model | Params(M) | Flops(G) | Top-1 (%) | Top-5 (%) | Config | Download |
|:---------------------:|:---------:|:--------:|:---------:|:---------:|:---------:|:--------:|
| ResNeXt-32x4d-50 | 25.03 | 4.27 | 77.90 | 93.66 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnext/resnext50_32x4d_b32x8_imagenet.py) | [model](https://download.openmmlab.com/mmclassification/v0/resnext/resnext50_32x4d_b32x8_imagenet_20210429-56066e27.pth) &#124; [log](https://download.openmmlab.com/mmclassification/v0/resnext/resnext50_32x4d_b32x8_imagenet_20210429-56066e27.log.json) |
| ResNeXt-32x4d-101 | 44.18 | 8.03 | 78.71 | 94.12 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnext/resnext101_32x4d_b32x8_imagenet.py) | [model](https://download.openmmlab.com/mmclassification/v0/resnext/resnext101_32x4d_b32x8_imagenet_20210506-e0fa3dd5.pth) &#124; [log](https://download.openmmlab.com/mmclassification/v0/resnext/resnext101_32x4d_b32x8_imagenet_20210506-e0fa3dd5.log.json) |
| ResNeXt-32x8d-101 | 88.79 | 16.5 | 79.23 | 94.58 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnext/resnext101_32x8d_b32x8_imagenet.py) | [model](https://download.openmmlab.com/mmclassification/v0/resnext/resnext101_32x8d_b32x8_imagenet_20210506-23a247d5.pth) &#124; [log](https://download.openmmlab.com/mmclassification/v0/resnext/resnext101_32x8d_b32x8_imagenet_20210506-23a247d5.log.json) |
| ResNeXt-32x4d-152 | 59.95 | 11.8 | 78.93 | 94.41 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnext/resnext152_32x4d_b32x8_imagenet.py) | [model](https://download.openmmlab.com/mmclassification/v0/resnext/resnext152_32x4d_b32x8_imagenet_20210524-927787be.pth) &#124; [log](https://download.openmmlab.com/mmclassification/v0/resnext/resnext152_32x4d_b32x8_imagenet_20210524-927787be.log.json) |
Collections:
- Name: ResNeXt
Metadata:
Training Data: ImageNet
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x V100 GPUs
Epochs: 100
Batch Size: 256
Architecture:
- ResNeXt
Paper: https://openaccess.thecvf.com/content_cvpr_2017/html/Xie_Aggregated_Residual_Transformations_CVPR_2017_paper.html
README: configs/resnext/README.md
Models:
- Config: configs/resnext/resnext50_32x4d_b32x8_imagenet.py
In Collection: ResNeXt
Metadata:
FLOPs: 4270000000
Parameters: 25030000
Name: resnext50_32x4d_b32x8_imagenet
Results:
- Dataset: ImageNet
Metrics:
Top 1 Accuracy: 77.92
Top 5 Accuracy: 93.74
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnext/resnext50_32x4d_batch256_imagenet_20200708-c07adbb7.pth
- Config: configs/resnext/resnext101_32x4d_b32x8_imagenet.py
In Collection: ResNeXt
Metadata:
FLOPs: 8030000000
Parameters: 44180000
Name: resnext101_32x4d_b32x8_imagenet
Results:
- Dataset: ImageNet
Metrics:
Top 1 Accuracy: 78.7
Top 5 Accuracy: 94.34
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnext/resnext101_32x4d_batch256_imagenet_20200708-87f2d1c9.pth
- Config: configs/resnext/resnext101_32x8d_b32x8_imagenet.py
In Collection: ResNeXt
Metadata:
FLOPs: 16500000000
Parameters: 88790000
Name: resnext101_32x8d_b32x8_imagenet
Results:
- Dataset: ImageNet
Metrics:
Top 1 Accuracy: 79.22
Top 5 Accuracy: 94.52
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnext/resnext101_32x8d_batch256_imagenet_20200708-1ec34aa7.pth
- Config: configs/resnext/resnext152_32x4d_b32x8_imagenet.py
In Collection: ResNeXt
Metadata:
FLOPs: 11800000000
Parameters: 59950000
Name: resnext152_32x4d_b32x8_imagenet
Results:
- Dataset: ImageNet
Metrics:
Top 1 Accuracy: 79.06
Top 5 Accuracy: 94.47
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/resnext/resnext152_32x4d_batch256_imagenet_20200708-aab5034c.pth
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment