Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
dcuai
dlexamples
Commits
85529f35
Commit
85529f35
authored
Jul 30, 2022
by
unknown
Browse files
添加openmmlab测试用例
parent
b21b0c01
Changes
977
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
864 additions
and
0 deletions
+864
-0
openmmlab_test/mmclassification-speed-benchmark/configs/lenet/README.md
.../mmclassification-speed-benchmark/configs/lenet/README.md
+18
-0
openmmlab_test/mmclassification-speed-benchmark/configs/lenet/lenet5_mnist.py
...ssification-speed-benchmark/configs/lenet/lenet5_mnist.py
+59
-0
openmmlab_test/mmclassification-speed-benchmark/configs/mobilenet_v2/README.md
...sification-speed-benchmark/configs/mobilenet_v2/README.md
+26
-0
openmmlab_test/mmclassification-speed-benchmark/configs/mobilenet_v2/metafile.yml
...ication-speed-benchmark/configs/mobilenet_v2/metafile.yml
+29
-0
openmmlab_test/mmclassification-speed-benchmark/configs/mobilenet_v2/mobilenet_v2_b32x8_imagenet.py
...hmark/configs/mobilenet_v2/mobilenet_v2_b32x8_imagenet.py
+6
-0
openmmlab_test/mmclassification-speed-benchmark/configs/regnet/README.md
...mmclassification-speed-benchmark/configs/regnet/README.md
+37
-0
openmmlab_test/mmclassification-speed-benchmark/configs/regnet/regnetx_1.6gf_b32x8_imagenet.py
...-benchmark/configs/regnet/regnetx_1.6gf_b32x8_imagenet.py
+51
-0
openmmlab_test/mmclassification-speed-benchmark/configs/regnet/regnetx_12gf_b32x8_imagenet.py
...d-benchmark/configs/regnet/regnetx_12gf_b32x8_imagenet.py
+51
-0
openmmlab_test/mmclassification-speed-benchmark/configs/regnet/regnetx_3.2gf_b32x8_imagenet.py
...-benchmark/configs/regnet/regnetx_3.2gf_b32x8_imagenet.py
+51
-0
openmmlab_test/mmclassification-speed-benchmark/configs/regnet/regnetx_4.0gf_b32x8_imagenet.py
...-benchmark/configs/regnet/regnetx_4.0gf_b32x8_imagenet.py
+51
-0
openmmlab_test/mmclassification-speed-benchmark/configs/regnet/regnetx_400mf_b32x8_imagenet.py
...-benchmark/configs/regnet/regnetx_400mf_b32x8_imagenet.py
+51
-0
openmmlab_test/mmclassification-speed-benchmark/configs/regnet/regnetx_6.4gf_b32x8_imagenet.py
...-benchmark/configs/regnet/regnetx_6.4gf_b32x8_imagenet.py
+51
-0
openmmlab_test/mmclassification-speed-benchmark/configs/regnet/regnetx_8.0gf_b32x8_imagenet.py
...-benchmark/configs/regnet/regnetx_8.0gf_b32x8_imagenet.py
+51
-0
openmmlab_test/mmclassification-speed-benchmark/configs/regnet/regnetx_800mf_b32x8_imagenet.py
...-benchmark/configs/regnet/regnetx_800mf_b32x8_imagenet.py
+51
-0
openmmlab_test/mmclassification-speed-benchmark/configs/resnet/README.md
...mmclassification-speed-benchmark/configs/resnet/README.md
+46
-0
openmmlab_test/mmclassification-speed-benchmark/configs/resnet/metafile.yml
...lassification-speed-benchmark/configs/resnet/metafile.yml
+217
-0
openmmlab_test/mmclassification-speed-benchmark/configs/resnet/resnet101_b16x8_cifar10.py
...speed-benchmark/configs/resnet/resnet101_b16x8_cifar10.py
+5
-0
openmmlab_test/mmclassification-speed-benchmark/configs/resnet/resnet101_b32x8_imagenet.py
...peed-benchmark/configs/resnet/resnet101_b32x8_imagenet.py
+4
-0
openmmlab_test/mmclassification-speed-benchmark/configs/resnet/resnet152_b16x8_cifar10.py
...speed-benchmark/configs/resnet/resnet152_b16x8_cifar10.py
+5
-0
openmmlab_test/mmclassification-speed-benchmark/configs/resnet/resnet152_b32x8_imagenet.py
...peed-benchmark/configs/resnet/resnet152_b32x8_imagenet.py
+4
-0
No files found.
Too many changes to show.
To preserve performance only
977 of 977+
files are displayed.
Plain diff
Email patch
openmmlab_test/mmclassification-speed-benchmark/configs/lenet/README.md
0 → 100644
View file @
85529f35
# Backpropagation Applied to Handwritten Zip Code Recognition
## Introduction
<!-- [ALGORITHM] -->
```
latex
@ARTICLE
{
6795724,
author=
{
Y.
{
LeCun
}
and B.
{
Boser
}
and J. S.
{
Denker
}
and D.
{
Henderson
}
and R. E.
{
Howard
}
and W.
{
Hubbard
}
and L. D.
{
Jackel
}}
,
journal=
{
Neural Computation
}
,
title=
{
Backpropagation Applied to Handwritten Zip Code Recognition
}
,
year=
{
1989
}
,
volume=
{
1
}
,
number=
{
4
}
,
pages=
{
541-551
}
,
doi=
{
10.1162/neco.1989.1.4.541
}}
}
```
openmmlab_test/mmclassification-speed-benchmark/configs/lenet/lenet5_mnist.py
0 → 100644
View file @
85529f35
# model settings
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'LeNet5'
,
num_classes
=
10
),
neck
=
None
,
head
=
dict
(
type
=
'ClsHead'
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
loss_weight
=
1.0
),
))
# dataset settings
dataset_type
=
'MNIST'
img_norm_cfg
=
dict
(
mean
=
[
33.46
],
std
=
[
78.87
],
to_rgb
=
True
)
train_pipeline
=
[
dict
(
type
=
'Resize'
,
size
=
32
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'ToTensor'
,
keys
=
[
'gt_label'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_label'
]),
]
test_pipeline
=
[
dict
(
type
=
'Resize'
,
size
=
32
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
]),
]
data
=
dict
(
samples_per_gpu
=
128
,
workers_per_gpu
=
2
,
train
=
dict
(
type
=
dataset_type
,
data_prefix
=
'data/mnist'
,
pipeline
=
train_pipeline
),
val
=
dict
(
type
=
dataset_type
,
data_prefix
=
'data/mnist'
,
pipeline
=
test_pipeline
),
test
=
dict
(
type
=
dataset_type
,
data_prefix
=
'data/mnist'
,
pipeline
=
test_pipeline
))
evaluation
=
dict
(
interval
=
5
,
metric
=
'accuracy'
,
metric_options
=
{
'topk'
:
(
1
,
)})
# optimizer
optimizer
=
dict
(
type
=
'SGD'
,
lr
=
0.01
,
momentum
=
0.9
,
weight_decay
=
0.0001
)
optimizer_config
=
dict
(
grad_clip
=
None
)
# learning policy
lr_config
=
dict
(
policy
=
'step'
,
step
=
[
15
])
# checkpoint saving
checkpoint_config
=
dict
(
interval
=
1
)
# yapf:disable
log_config
=
dict
(
interval
=
150
,
hooks
=
[
dict
(
type
=
'TextLoggerHook'
),
# dict(type='TensorboardLoggerHook')
])
# yapf:enable
# runtime settings
runner
=
dict
(
type
=
'EpochBasedRunner'
,
max_epochs
=
5
)
dist_params
=
dict
(
backend
=
'nccl'
)
log_level
=
'INFO'
work_dir
=
'./work_dirs/mnist/'
load_from
=
None
resume_from
=
None
workflow
=
[(
'train'
,
1
)]
openmmlab_test/mmclassification-speed-benchmark/configs/mobilenet_v2/README.md
0 → 100644
View file @
85529f35
# MobileNetV2: Inverted Residuals and Linear Bottlenecks
## Introduction
<!-- [ALGORITHM] -->
```
latex
@INPROCEEDINGS
{
8578572,
author=
{
M.
{
Sandler
}
and A.
{
Howard
}
and M.
{
Zhu
}
and A.
{
Zhmoginov
}
and L.
{
Chen
}}
,
booktitle=
{
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
}
,
title=
{
MobileNetV2: Inverted Residuals and Linear Bottlenecks
}
,
year=
{
2018
}
,
volume=
{}
,
number=
{}
,
pages=
{
4510-4520
}
,
doi=
{
10.1109/CVPR.2018.00474
}}
}
```
## Results and models
### ImageNet
| Model | Params(M) | Flops(G) | Top-1 (%) | Top-5 (%) | Config | Download |
|:---------------------:|:---------:|:--------:|:---------:|:---------:|:---------:|:--------:|
| MobileNet V2 | 3.5 | 0.319 | 71.86 | 90.42 |
[
config
](
https://github.com/open-mmlab/mmclassification/blob/master/configs/mobilenet_v2/mobilenet_v2_b32x8_imagenet.py
)
|
[
model
](
https://download.openmmlab.com/mmclassification/v0/mobilenet_v2/mobilenet_v2_batch256_imagenet_20200708-3b2dc3af.pth
)
|
[
log
](
https://download.openmmlab.com/mmclassification/v0/mobilenet_v2/mobilenet_v2_batch256_imagenet_20200708-3b2dc3af.log.json
)
|
openmmlab_test/mmclassification-speed-benchmark/configs/mobilenet_v2/metafile.yml
0 → 100644
View file @
85529f35
Collections
:
-
Name
:
MobileNet V2
Metadata
:
Training Data
:
ImageNet
Training Techniques
:
-
SGD with Momentum
-
Weight Decay
Training Resources
:
8x V100 GPUs
Epochs
:
300
Batch Size
:
256
Architecture
:
-
MobileNet V2
Paper
:
https://arxiv.org/abs/1801.04381
README
:
configs/mobilenet_v2/README.md
Models
:
-
Config
:
configs/mobilenet_v2/mobilenet_v2_b32x8_imagenet.py
In Collection
:
MobileNet V2
Metadata
:
FLOPs
:
319000000
Parameters
:
3500000
Name
:
mobilenet_v2_b32x8_imagenet
Results
:
-
Dataset
:
ImageNet
Metrics
:
Top 1 Accuracy
:
71.86
Top 5 Accuracy
:
90.42
Task
:
Image Classification
Weights
:
https://download.openmmlab.com/mmclassification/v0/mobilenet_v2/mobilenet_v2_batch256_imagenet_20200708-3b2dc3af.pth
openmmlab_test/mmclassification-speed-benchmark/configs/mobilenet_v2/mobilenet_v2_b32x8_imagenet.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/mobilenet_v2_1x.py'
,
'../_base_/datasets/imagenet_bs32_pil_resize.py'
,
'../_base_/schedules/imagenet_bs256_epochstep.py'
,
'../_base_/default_runtime.py'
]
openmmlab_test/mmclassification-speed-benchmark/configs/regnet/README.md
0 → 100644
View file @
85529f35
# Designing Network Design Spaces
## Introduction
<!-- [ALGORITHM] -->
```
latex
@article
{
radosavovic2020designing,
title=
{
Designing Network Design Spaces
}
,
author=
{
Ilija Radosavovic and Raj Prateek Kosaraju and Ross Girshick and Kaiming He and Piotr Dollár
}
,
year=
{
2020
}
,
eprint=
{
2003.13678
}
,
archivePrefix=
{
arXiv
}
,
primaryClass=
{
cs.CV
}
}
```
## Pretrain model
The pre-trained modles are converted from
[
model zoo of pycls
](
https://github.com/facebookresearch/pycls/blob/master/MODEL_ZOO.md
)
.
### ImageNet
| Model | Params(M) | Flops(G) | Top-1 (%) | Top-5 (%) | Download |
|:---------------------:|:---------:|:--------:|:---------:|:---------:|:--------:|
| RegNetX-400MF | 5.16 | 0.41 | 72.55 | 90.91 |
[
model
](
https://download.openmmlab.com/mmclassification/v0/regnet/convert/RegNetX-400MF-0db9f35c.pth
)
|
| RegNetX-800MF | 7.26 | 0.81 | 75.21 | 92.37 |
[
model
](
https://download.openmmlab.com/mmclassification/v0/regnet/convert/RegNetX-800MF-4f9d1e8a.pth
)
|
| RegNetX-1.6GF | 9.19 | 1.63 | 77.04 | 93.51 |
[
model
](
https://download.openmmlab.com/mmclassification/v0/regnet/convert/RegNetX-1.6GF-cfb32375.pth
)
|
| RegNetX-3.2GF | 15.3 | 3.21 | 78.26 | 94.20 |
[
model
](
https://download.openmmlab.com/mmclassification/v0/regnet/convert/RegNetX-3.2GF-82c43fd5.pth
)
|
| RegNetX-4.0GF | 22.12 | 4.0 | 78.72 | 94.22 |
[
model
](
https://download.openmmlab.com/mmclassification/v0/regnet/convert/RegNetX-4.0GF-ef8bb32c.pth
)
|
| RegNetX-6.4GF | 26.21 | 6.51 | 79.22 | 94.61 |
[
model
](
https://download.openmmlab.com/mmclassification/v0/regnet/convert/RegNetX-6.4GF-6888c0ea.pth
)
|
| RegNetX-8.0GF | 39.57 | 8.03 | 79.31 | 94.57 |
[
model
](
https://download.openmmlab.com/mmclassification/v0/regnet/convert/RegNetX-8.0GF-cb4c77ec.pth
)
|
| RegNetX-12GF | 46.11 | 12.15 | 79.91 | 94.78 |
[
model
](
https://download.openmmlab.com/mmclassification/v0/regnet/convert/RegNetX-12GF-0574538f.pth
)
|
## Results and models
Waiting for adding.
openmmlab_test/mmclassification-speed-benchmark/configs/regnet/regnetx_1.6gf_b32x8_imagenet.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/regnet/regnetx_1.6gf.py'
,
'../_base_/datasets/imagenet_bs32.py'
,
'../_base_/schedules/imagenet_bs256.py'
,
'../_base_/default_runtime.py'
]
# dataset settings
dataset_type
=
'ImageNet'
img_norm_cfg
=
dict
(
# The mean and std are used in PyCls when training RegNets
mean
=
[
103.53
,
116.28
,
123.675
],
std
=
[
57.375
,
57.12
,
58.395
],
to_rgb
=
False
)
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'RandomResizedCrop'
,
size
=
224
),
dict
(
type
=
'RandomFlip'
,
flip_prob
=
0.5
,
direction
=
'horizontal'
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'ToTensor'
,
keys
=
[
'gt_label'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_label'
])
]
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'Resize'
,
size
=
(
256
,
-
1
)),
dict
(
type
=
'CenterCrop'
,
crop_size
=
224
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
])
]
data
=
dict
(
samples_per_gpu
=
32
,
workers_per_gpu
=
2
,
train
=
dict
(
type
=
dataset_type
,
data_prefix
=
'data/imagenet/train'
,
pipeline
=
train_pipeline
),
val
=
dict
(
type
=
dataset_type
,
data_prefix
=
'data/imagenet/val'
,
ann_file
=
'data/imagenet/meta/val.txt'
,
pipeline
=
test_pipeline
),
test
=
dict
(
# replace `data/val` with `data/test` for standard test
type
=
dataset_type
,
data_prefix
=
'data/imagenet/val'
,
ann_file
=
'data/imagenet/meta/val.txt'
,
pipeline
=
test_pipeline
))
evaluation
=
dict
(
interval
=
1
,
metric
=
'accuracy'
)
openmmlab_test/mmclassification-speed-benchmark/configs/regnet/regnetx_12gf_b32x8_imagenet.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/regnet/regnetx_12gf.py'
,
'../_base_/datasets/imagenet_bs32.py'
,
'../_base_/schedules/imagenet_bs256.py'
,
'../_base_/default_runtime.py'
]
# dataset settings
dataset_type
=
'ImageNet'
img_norm_cfg
=
dict
(
# The mean and std are used in PyCls when training RegNets
mean
=
[
103.53
,
116.28
,
123.675
],
std
=
[
57.375
,
57.12
,
58.395
],
to_rgb
=
False
)
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'RandomResizedCrop'
,
size
=
224
),
dict
(
type
=
'RandomFlip'
,
flip_prob
=
0.5
,
direction
=
'horizontal'
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'ToTensor'
,
keys
=
[
'gt_label'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_label'
])
]
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'Resize'
,
size
=
(
256
,
-
1
)),
dict
(
type
=
'CenterCrop'
,
crop_size
=
224
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
])
]
data
=
dict
(
samples_per_gpu
=
32
,
workers_per_gpu
=
2
,
train
=
dict
(
type
=
dataset_type
,
data_prefix
=
'data/imagenet/train'
,
pipeline
=
train_pipeline
),
val
=
dict
(
type
=
dataset_type
,
data_prefix
=
'data/imagenet/val'
,
ann_file
=
'data/imagenet/meta/val.txt'
,
pipeline
=
test_pipeline
),
test
=
dict
(
# replace `data/val` with `data/test` for standard test
type
=
dataset_type
,
data_prefix
=
'data/imagenet/val'
,
ann_file
=
'data/imagenet/meta/val.txt'
,
pipeline
=
test_pipeline
))
evaluation
=
dict
(
interval
=
1
,
metric
=
'accuracy'
)
openmmlab_test/mmclassification-speed-benchmark/configs/regnet/regnetx_3.2gf_b32x8_imagenet.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/regnet/regnetx_3.2gf.py'
,
'../_base_/datasets/imagenet_bs32.py'
,
'../_base_/schedules/imagenet_bs256.py'
,
'../_base_/default_runtime.py'
]
# dataset settings
dataset_type
=
'ImageNet'
img_norm_cfg
=
dict
(
# The mean and std are used in PyCls when training RegNets
mean
=
[
103.53
,
116.28
,
123.675
],
std
=
[
57.375
,
57.12
,
58.395
],
to_rgb
=
False
)
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'RandomResizedCrop'
,
size
=
224
),
dict
(
type
=
'RandomFlip'
,
flip_prob
=
0.5
,
direction
=
'horizontal'
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'ToTensor'
,
keys
=
[
'gt_label'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_label'
])
]
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'Resize'
,
size
=
(
256
,
-
1
)),
dict
(
type
=
'CenterCrop'
,
crop_size
=
224
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
])
]
data
=
dict
(
samples_per_gpu
=
32
,
workers_per_gpu
=
2
,
train
=
dict
(
type
=
dataset_type
,
data_prefix
=
'data/imagenet/train'
,
pipeline
=
train_pipeline
),
val
=
dict
(
type
=
dataset_type
,
data_prefix
=
'data/imagenet/val'
,
ann_file
=
'data/imagenet/meta/val.txt'
,
pipeline
=
test_pipeline
),
test
=
dict
(
# replace `data/val` with `data/test` for standard test
type
=
dataset_type
,
data_prefix
=
'data/imagenet/val'
,
ann_file
=
'data/imagenet/meta/val.txt'
,
pipeline
=
test_pipeline
))
evaluation
=
dict
(
interval
=
1
,
metric
=
'accuracy'
)
openmmlab_test/mmclassification-speed-benchmark/configs/regnet/regnetx_4.0gf_b32x8_imagenet.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/regnet/regnetx_4.0gf.py'
,
'../_base_/datasets/imagenet_bs32.py'
,
'../_base_/schedules/imagenet_bs256.py'
,
'../_base_/default_runtime.py'
]
# dataset settings
dataset_type
=
'ImageNet'
img_norm_cfg
=
dict
(
# The mean and std are used in PyCls when training RegNets
mean
=
[
103.53
,
116.28
,
123.675
],
std
=
[
57.375
,
57.12
,
58.395
],
to_rgb
=
False
)
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'RandomResizedCrop'
,
size
=
224
),
dict
(
type
=
'RandomFlip'
,
flip_prob
=
0.5
,
direction
=
'horizontal'
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'ToTensor'
,
keys
=
[
'gt_label'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_label'
])
]
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'Resize'
,
size
=
(
256
,
-
1
)),
dict
(
type
=
'CenterCrop'
,
crop_size
=
224
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
])
]
data
=
dict
(
samples_per_gpu
=
32
,
workers_per_gpu
=
2
,
train
=
dict
(
type
=
dataset_type
,
data_prefix
=
'data/imagenet/train'
,
pipeline
=
train_pipeline
),
val
=
dict
(
type
=
dataset_type
,
data_prefix
=
'data/imagenet/val'
,
ann_file
=
'data/imagenet/meta/val.txt'
,
pipeline
=
test_pipeline
),
test
=
dict
(
# replace `data/val` with `data/test` for standard test
type
=
dataset_type
,
data_prefix
=
'data/imagenet/val'
,
ann_file
=
'data/imagenet/meta/val.txt'
,
pipeline
=
test_pipeline
))
evaluation
=
dict
(
interval
=
1
,
metric
=
'accuracy'
)
openmmlab_test/mmclassification-speed-benchmark/configs/regnet/regnetx_400mf_b32x8_imagenet.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/regnet/regnetx_400mf.py'
,
'../_base_/datasets/imagenet_bs32.py'
,
'../_base_/schedules/imagenet_bs256.py'
,
'../_base_/default_runtime.py'
]
# dataset settings
dataset_type
=
'ImageNet'
img_norm_cfg
=
dict
(
# The mean and std are used in PyCls when training RegNets
mean
=
[
103.53
,
116.28
,
123.675
],
std
=
[
57.375
,
57.12
,
58.395
],
to_rgb
=
False
)
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'RandomResizedCrop'
,
size
=
224
),
dict
(
type
=
'RandomFlip'
,
flip_prob
=
0.5
,
direction
=
'horizontal'
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'ToTensor'
,
keys
=
[
'gt_label'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_label'
])
]
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'Resize'
,
size
=
(
256
,
-
1
)),
dict
(
type
=
'CenterCrop'
,
crop_size
=
224
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
])
]
data
=
dict
(
samples_per_gpu
=
32
,
workers_per_gpu
=
2
,
train
=
dict
(
type
=
dataset_type
,
data_prefix
=
'data/imagenet/train'
,
pipeline
=
train_pipeline
),
val
=
dict
(
type
=
dataset_type
,
data_prefix
=
'data/imagenet/val'
,
ann_file
=
'data/imagenet/meta/val.txt'
,
pipeline
=
test_pipeline
),
test
=
dict
(
# replace `data/val` with `data/test` for standard test
type
=
dataset_type
,
data_prefix
=
'data/imagenet/val'
,
ann_file
=
'data/imagenet/meta/val.txt'
,
pipeline
=
test_pipeline
))
evaluation
=
dict
(
interval
=
1
,
metric
=
'accuracy'
)
openmmlab_test/mmclassification-speed-benchmark/configs/regnet/regnetx_6.4gf_b32x8_imagenet.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/regnet/regnetx_6.4gf.py'
,
'../_base_/datasets/imagenet_bs32.py'
,
'../_base_/schedules/imagenet_bs256.py'
,
'../_base_/default_runtime.py'
]
# dataset settings
dataset_type
=
'ImageNet'
img_norm_cfg
=
dict
(
# The mean and std are used in PyCls when training RegNets
mean
=
[
103.53
,
116.28
,
123.675
],
std
=
[
57.375
,
57.12
,
58.395
],
to_rgb
=
False
)
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'RandomResizedCrop'
,
size
=
224
),
dict
(
type
=
'RandomFlip'
,
flip_prob
=
0.5
,
direction
=
'horizontal'
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'ToTensor'
,
keys
=
[
'gt_label'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_label'
])
]
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'Resize'
,
size
=
(
256
,
-
1
)),
dict
(
type
=
'CenterCrop'
,
crop_size
=
224
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
])
]
data
=
dict
(
samples_per_gpu
=
32
,
workers_per_gpu
=
2
,
train
=
dict
(
type
=
dataset_type
,
data_prefix
=
'data/imagenet/train'
,
pipeline
=
train_pipeline
),
val
=
dict
(
type
=
dataset_type
,
data_prefix
=
'data/imagenet/val'
,
ann_file
=
'data/imagenet/meta/val.txt'
,
pipeline
=
test_pipeline
),
test
=
dict
(
# replace `data/val` with `data/test` for standard test
type
=
dataset_type
,
data_prefix
=
'data/imagenet/val'
,
ann_file
=
'data/imagenet/meta/val.txt'
,
pipeline
=
test_pipeline
))
evaluation
=
dict
(
interval
=
1
,
metric
=
'accuracy'
)
openmmlab_test/mmclassification-speed-benchmark/configs/regnet/regnetx_8.0gf_b32x8_imagenet.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/regnet/regnetx_8.0gf.py'
,
'../_base_/datasets/imagenet_bs32.py'
,
'../_base_/schedules/imagenet_bs256.py'
,
'../_base_/default_runtime.py'
]
# dataset settings
dataset_type
=
'ImageNet'
img_norm_cfg
=
dict
(
# The mean and std are used in PyCls when training RegNets
mean
=
[
103.53
,
116.28
,
123.675
],
std
=
[
57.375
,
57.12
,
58.395
],
to_rgb
=
False
)
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'RandomResizedCrop'
,
size
=
224
),
dict
(
type
=
'RandomFlip'
,
flip_prob
=
0.5
,
direction
=
'horizontal'
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'ToTensor'
,
keys
=
[
'gt_label'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_label'
])
]
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'Resize'
,
size
=
(
256
,
-
1
)),
dict
(
type
=
'CenterCrop'
,
crop_size
=
224
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
])
]
data
=
dict
(
samples_per_gpu
=
32
,
workers_per_gpu
=
2
,
train
=
dict
(
type
=
dataset_type
,
data_prefix
=
'data/imagenet/train'
,
pipeline
=
train_pipeline
),
val
=
dict
(
type
=
dataset_type
,
data_prefix
=
'data/imagenet/val'
,
ann_file
=
'data/imagenet/meta/val.txt'
,
pipeline
=
test_pipeline
),
test
=
dict
(
# replace `data/val` with `data/test` for standard test
type
=
dataset_type
,
data_prefix
=
'data/imagenet/val'
,
ann_file
=
'data/imagenet/meta/val.txt'
,
pipeline
=
test_pipeline
))
evaluation
=
dict
(
interval
=
1
,
metric
=
'accuracy'
)
openmmlab_test/mmclassification-speed-benchmark/configs/regnet/regnetx_800mf_b32x8_imagenet.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/regnet/regnetx_800mf.py'
,
'../_base_/datasets/imagenet_bs32.py'
,
'../_base_/schedules/imagenet_bs256.py'
,
'../_base_/default_runtime.py'
]
# dataset settings
dataset_type
=
'ImageNet'
img_norm_cfg
=
dict
(
# The mean and std are used in PyCls when training RegNets
mean
=
[
103.53
,
116.28
,
123.675
],
std
=
[
57.375
,
57.12
,
58.395
],
to_rgb
=
False
)
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'RandomResizedCrop'
,
size
=
224
),
dict
(
type
=
'RandomFlip'
,
flip_prob
=
0.5
,
direction
=
'horizontal'
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'ToTensor'
,
keys
=
[
'gt_label'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_label'
])
]
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'Resize'
,
size
=
(
256
,
-
1
)),
dict
(
type
=
'CenterCrop'
,
crop_size
=
224
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
])
]
data
=
dict
(
samples_per_gpu
=
32
,
workers_per_gpu
=
2
,
train
=
dict
(
type
=
dataset_type
,
data_prefix
=
'data/imagenet/train'
,
pipeline
=
train_pipeline
),
val
=
dict
(
type
=
dataset_type
,
data_prefix
=
'data/imagenet/val'
,
ann_file
=
'data/imagenet/meta/val.txt'
,
pipeline
=
test_pipeline
),
test
=
dict
(
# replace `data/val` with `data/test` for standard test
type
=
dataset_type
,
data_prefix
=
'data/imagenet/val'
,
ann_file
=
'data/imagenet/meta/val.txt'
,
pipeline
=
test_pipeline
))
evaluation
=
dict
(
interval
=
1
,
metric
=
'accuracy'
)
openmmlab_test/mmclassification-speed-benchmark/configs/resnet/README.md
0 → 100644
View file @
85529f35
# Deep Residual Learning for Image Recognition
## Introduction
<!-- [ALGORITHM] -->
```
latex
@inproceedings
{
he2016deep,
title=
{
Deep residual learning for image recognition
}
,
author=
{
He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian
}
,
booktitle=
{
Proceedings of the IEEE conference on computer vision and pattern recognition
}
,
pages=
{
770--778
}
,
year=
{
2016
}
}
```
## Results and models
## Cifar10
| Model | Params(M) | Flops(G) | Top-1 (%) | Top-5 (%) | Config | Download |
|:---------------------:|:---------:|:--------:|:---------:|:---------:|:---------:|:--------:|
| ResNet-18-b16x8 | 11.17 | 0.56 | 94.82 | |
[
config
](
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet18_b16x8_cifar10.py
)
|
[
model
](
https://download.openmmlab.com/mmclassification/v0/resnet/resnet18_b16x8_cifar10_20210528-bd6371c8.pth
)
|
[
log
](
https://download.openmmlab.com/mmclassification/v0/resnet/resnet18_b16x8_cifar10_20210528-bd6371c8.log.json
)
|
| ResNet-34-b16x8 | 21.28 | 1.16 | 95.34 | |
[
config
](
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet34_b16x8_cifar10.py
)
|
[
model
](
https://download.openmmlab.com/mmclassification/v0/resnet/resnet34_b16x8_cifar10_20210528-a8aa36a6.pth
)
|
[
log
](
https://download.openmmlab.com/mmclassification/v0/resnet/resnet34_b16x8_cifar10_20210528-a8aa36a6.log.json
)
|
| ResNet-50-b16x8 | 23.52 | 1.31 | 95.55 | |
[
config
](
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet50_b16x8_cifar10.py
)
|
[
model
](
https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_b16x8_cifar10_20210528-f54bfad9.pth
)
|
[
log
](
https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_b16x8_cifar10_20210528-f54bfad9.log.json
)
|
| ResNet-101-b16x8 | 42.51 | 2.52 | 95.58 | |
[
config
](
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet101_b16x8_cifar10.py
)
|
[
model
](
https://download.openmmlab.com/mmclassification/v0/resnet/resnet101_b16x8_cifar10_20210528-2d29e936.pth
)
|
[
log
](
https://download.openmmlab.com/mmclassification/v0/resnet/resnet101_b16x8_cifar10_20210528-2d29e936.log.json
)
|
| ResNet-152-b16x8 | 58.16 | 3.74 | 95.76 | |
[
config
](
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet152_b16x8_cifar10.py
)
|
[
model
](
https://download.openmmlab.com/mmclassification/v0/resnet/resnet152_b16x8_cifar10_20210528-3e8e9178.pth
)
|
[
log
](
https://download.openmmlab.com/mmclassification/v0/resnet/resnet152_b16x8_cifar10_20210528-3e8e9178.log.json
)
|
## Cifar100
| Model | Params(M) | Flops(G) | Top-1 (%) | Top-5 (%) | Config | Download |
|:---------------------:|:---------:|:--------:|:---------:|:---------:|:---------:|:--------:|
| ResNet-50-b16x8 | 23.71 | 1.31 | 79.9 | 95.19 |
[
config
](
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet50_b16x8_cifar100.py
)
|
[
model
](
https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_b16x8_cifar100_20210528-67b58a1b.pth
)
|
[
log
](
https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_b16x8_cifar100_20210528-67b58a1b.log.json
)
|
### ImageNet
| Model | Params(M) | Flops(G) | Top-1 (%) | Top-5 (%) | Config | Download |
|:---------------------:|:---------:|:--------:|:---------:|:---------:|:---------:|:--------:|
| ResNet-18 | 11.69 | 1.82 | 70.07 | 89.44 |
[
config
](
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet18_b32x8_imagenet.py
)
|
[
model
](
https://download.openmmlab.com/mmclassification/v0/resnet/resnet18_batch256_imagenet_20200708-34ab8f90.pth
)
|
[
log
](
https://download.openmmlab.com/mmclassification/v0/resnet/resnet18_batch256_imagenet_20200708-34ab8f90.log.json
)
|
| ResNet-34 | 21.8 | 3.68 | 73.85 | 91.53 |
[
config
](
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet34_b32x8_imagenet.py
)
|
[
model
](
https://download.openmmlab.com/mmclassification/v0/resnet/resnet34_batch256_imagenet_20200708-32ffb4f7.pth
)
|
[
log
](
https://download.openmmlab.com/mmclassification/v0/resnet/resnet34_batch256_imagenet_20200708-32ffb4f7.log.json
)
|
| ResNet-50 | 25.56 | 4.12 | 76.55 | 93.15 |
[
config
](
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet50_b32x8_imagenet.py
)
|
[
model
](
https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_batch256_imagenet_20200708-cfb998bf.pth
)
|
[
log
](
https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_batch256_imagenet_20200708-cfb998bf.log.json
)
|
| ResNet-101 | 44.55 | 7.85 | 78.18 | 94.03 |
[
config
](
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet101_b32x8_imagenet.py
)
|
[
model
](
https://download.openmmlab.com/mmclassification/v0/resnet/resnet101_batch256_imagenet_20200708-753f3608.pth
)
|
[
log
](
https://download.openmmlab.com/mmclassification/v0/resnet/resnet101_batch256_imagenet_20200708-753f3608.log.json
)
|
| ResNet-152 | 60.19 | 11.58 | 78.63 | 94.16 |
[
config
](
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet152_b32x8_imagenet.py
)
|
[
model
](
https://download.openmmlab.com/mmclassification/v0/resnet/resnet152_batch256_imagenet_20200708-ec25b1f9.pth
)
|
[
log
](
https://download.openmmlab.com/mmclassification/v0/resnet/resnet152_batch256_imagenet_20200708-ec25b1f9.log.json
)
|
| ResNetV1D-50 | 25.58 | 4.36 | 77.54 | 93.57 |
[
config
](
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnetv1d50_b32x8_imagenet.py
)
|
[
model
](
https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d50_b32x8_imagenet_20210531-db14775a.pth
)
|
[
log
](
https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d50_b32x8_imagenet_20210531-db14775a.log.json
)
|
| ResNetV1D-101 | 44.57 | 8.09 | 78.93 | 94.48 |
[
config
](
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnetv1d101_b32x8_imagenet.py
)
|
[
model
](
https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d101_b32x8_imagenet_20210531-6e13bcd3.pth
)
|
[
log
](
https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d101_b32x8_imagenet_20210531-6e13bcd3.log.json
)
|
| ResNetV1D-152 | 60.21 | 11.82 | 79.41 | 94.7 |
[
config
](
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnetv1d152_b32x8_imagenet.py
)
|
[
model
](
https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d152_b32x8_imagenet_20210531-278cf22a.pth
)
|
[
log
](
https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d152_b32x8_imagenet_20210531-278cf22a.log.json
)
|
openmmlab_test/mmclassification-speed-benchmark/configs/resnet/metafile.yml
0 → 100644
View file @
85529f35
Collections
:
-
Name
:
ResNet
Metadata
:
Training Data
:
ImageNet
Training Techniques
:
-
SGD with Momentum
-
Weight Decay
Training Resources
:
8x V100 GPUs
Epochs
:
100
Batch Size
:
256
Architecture
:
-
ResNet
Paper
:
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
README
:
configs/resnet/README.md
Models
:
-
Config
:
configs/resnet/resnet18_b16x8_cifar10.py
In Collection
:
ResNet
Metadata
:
FLOPs
:
560000000
Parameters
:
11170000
Training Data
:
CIFAR-10
Training Resources
:
8x 1080 GPUs
Epochs
:
200
Batch Size
:
128
Name
:
resnet18_b16x8_cifar10
Results
:
-
Dataset
:
CIFAR-10
Metrics
:
Top 1 Accuracy
:
94.72
Task
:
Image Classification
Weights
:
https://download.openmmlab.com/mmclassification/v0/resnet/resnet18_b16x8_cifar10_20200823-f906fa4e.pth
-
Config
:
configs/resnet/resnet34_b16x8_cifar10.py
In Collection
:
ResNet
Metadata
:
FLOPs
:
1160000000
Parameters
:
21280000
Training Data
:
CIFAR-10
Training Resources
:
8x 1080 GPUs
Epochs
:
200
Batch Size
:
128
Name
:
resnet34_b16x8_cifar10
Results
:
-
Dataset
:
CIFAR-10
Metrics
:
Top 1 Accuracy
:
95.34
Task
:
Image Classification
Weights
:
https://download.openmmlab.com/mmclassification/v0/resnet/resnet34_b16x8_cifar10_20200823-52d5d832.pth
-
Config
:
configs/resnet/resnet50_b16x8_cifar10.py
In Collection
:
ResNet
Metadata
:
FLOPs
:
1310000000
Parameters
:
23520000
Training Data
:
CIFAR-10
Training Resources
:
8x 1080 GPUs
Epochs
:
200
Batch Size
:
128
Name
:
resnet50_b16x8_cifar10
Results
:
-
Dataset
:
CIFAR-10
Metrics
:
Top 1 Accuracy
:
95.36
Task
:
Image Classification
Weights
:
https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_b16x8_cifar10_20200823-882aa7b1.pth
-
Config
:
configs/resnet/resnet101_b16x8_cifar10.py
In Collection
:
ResNet
Metadata
:
FLOPs
:
2520000000
Parameters
:
42510000
Training Data
:
CIFAR-10
Training Resources
:
8x 1080 GPUs
Epochs
:
200
Batch Size
:
128
Name
:
resnet101_b16x8_cifar10
Results
:
-
Dataset
:
CIFAR-10
Metrics
:
Top 1 Accuracy
:
95.66
Task
:
Image Classification
Weights
:
https://download.openmmlab.com/mmclassification/v0/resnet/resnet101_b16x8_cifar10_20200823-d9501bbc.pth
-
Config
:
configs/resnet/resnet152_b16x8_cifar10.py
In Collection
:
ResNet
Metadata
:
FLOPs
:
3740000000
Parameters
:
58160000
Training Data
:
CIFAR-10
Training Resources
:
8x 1080 GPUs
Epochs
:
200
Batch Size
:
128
Name
:
resnet152_b16x8_cifar10
Results
:
-
Dataset
:
CIFAR-10
Metrics
:
Top 1 Accuracy
:
95.96
Task
:
Image Classification
Weights
:
https://download.openmmlab.com/mmclassification/v0/resnet/resnet152_b16x8_cifar10_20200823-ad4d5d0c.pth
-
Config
:
configs/resnet/resnet50_b16x8_cifar100.py
In Collection
:
ResNet
Metadata
:
FLOPs
:
1310000000
Parameters
:
23710000
Training Data
:
CIFAR-100
Training Resources
:
8x 1080 GPUs
Epochs
:
200
Batch Size
:
128
Name
:
resnet50_b16x8_cifar100
Results
:
-
Dataset
:
CIFAR-100
Metrics
:
Top 1 Accuracy
:
80.51
Top 5 Accuracy
:
95.27
Task
:
Image Classification
Weights
:
https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_batch256_cifar100_20210410-37f13c16.pth
-
Config
:
configs/resnet/resnet18_b32x8_imagenet.py
In Collection
:
ResNet
Metadata
:
FLOPs
:
1820000000
Parameters
:
11690000
Name
:
resnet18_b32x8_imagenet
Results
:
-
Dataset
:
ImageNet
Metrics
:
Top 1 Accuracy
:
70.07
Top 5 Accuracy
:
89.44
Task
:
Image Classification
Weights
:
https://download.openmmlab.com/mmclassification/v0/resnet/resnet18_batch256_imagenet_20200708-34ab8f90.pth
-
Config
:
configs/resnet/resnet34_b32x8_imagenet.py
In Collection
:
ResNet
Metadata
:
FLOPs
:
3680000000
Parameters
:
2180000
Name
:
resnet34_b32x8_imagenet
Results
:
-
Dataset
:
ImageNet
Metrics
:
Top 1 Accuracy
:
73.85
Top 5 Accuracy
:
91.53
Task
:
Image Classification
Weights
:
https://download.openmmlab.com/mmclassification/v0/resnet/resnet34_batch256_imagenet_20200708-32ffb4f7.pth
-
Config
:
configs/resnet/resnet50_b32x8_imagenet.py
In Collection
:
ResNet
Metadata
:
FLOPs
:
4120000000
Parameters
:
25560000
Name
:
resnet50_b32x8_imagenet
Results
:
-
Dataset
:
ImageNet
Metrics
:
Top 1 Accuracy
:
76.55
Top 5 Accuracy
:
93.15
Task
:
Image Classification
Weights
:
https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_batch256_imagenet_20200708-cfb998bf.pth
-
Config
:
configs/resnet/resnet101_b32x8_imagenet.py
In Collection
:
ResNet
Metadata
:
FLOPs
:
7850000000
Parameters
:
44550000
Name
:
resnet101_b32x8_imagenet
Results
:
-
Dataset
:
ImageNet
Metrics
:
Top 1 Accuracy
:
78.18
Top 5 Accuracy
:
94.03
Task
:
Image Classification
Weights
:
https://download.openmmlab.com/mmclassification/v0/resnet/resnet101_batch256_imagenet_20200708-753f3608.pth
-
Config
:
configs/resnet/resnet152_b32x8_imagenet.py
In Collection
:
ResNet
Metadata
:
FLOPs
:
11580000000
Parameters
:
60190000
Name
:
resnet152_b32x8_imagenet
Results
:
-
Dataset
:
ImageNet
Metrics
:
Top 1 Accuracy
:
78.63
Top 5 Accuracy
:
94.16
Task
:
Image Classification
Weights
:
https://download.openmmlab.com/mmclassification/v0/resnet/resnet152_batch256_imagenet_20200708-ec25b1f9.pth
-
Config
:
configs/resnet/resnetv1d50_b32x8_imagenet.py
In Collection
:
ResNet
Metadata
:
FLOPs
:
4360000000
Parameters
:
25580000
Name
:
resnetv1d50_b32x8_imagenet
Results
:
-
Dataset
:
ImageNet
Metrics
:
Top 1 Accuracy
:
77.4
Top 5 Accuracy
:
93.66
Task
:
Image Classification
Weights
:
https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d50_batch256_imagenet_20200708-1ad0ce94.pth
-
Config
:
configs/resnet/resnetv1d101_b32x8_imagenet.py
In Collection
:
ResNet
Metadata
:
FLOPs
:
8090000000
Parameters
:
44570000
Name
:
resnetv1d101_b32x8_imagenet
Results
:
-
Dataset
:
ImageNet
Metrics
:
Top 1 Accuracy
:
78.85
Top 5 Accuracy
:
94.38
Task
:
Image Classification
Weights
:
https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d101_batch256_imagenet_20200708-9cb302ef.pth
-
Config
:
configs/resnet/resnetv1d152_b32x8_imagenet.py
In Collection
:
ResNet
Metadata
:
FLOPs
:
11820000000
Parameters
:
60210000
Name
:
resnetv1d152_b32x8_imagenet
Results
:
-
Dataset
:
ImageNet
Metrics
:
Top 1 Accuracy
:
79.35
Top 5 Accuracy
:
94.61
Task
:
Image Classification
Weights
:
https://download.openmmlab.com/mmclassification/v0/resnet/resnetv1d152_batch256_imagenet_20200708-e79cb6a2.pth
openmmlab_test/mmclassification-speed-benchmark/configs/resnet/resnet101_b16x8_cifar10.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/resnet101_cifar.py'
,
'../_base_/datasets/cifar10_bs16.py'
,
'../_base_/schedules/cifar10_bs128.py'
,
'../_base_/default_runtime.py'
]
openmmlab_test/mmclassification-speed-benchmark/configs/resnet/resnet101_b32x8_imagenet.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/resnet101.py'
,
'../_base_/datasets/imagenet_bs32.py'
,
'../_base_/schedules/imagenet_bs256.py'
,
'../_base_/default_runtime.py'
]
openmmlab_test/mmclassification-speed-benchmark/configs/resnet/resnet152_b16x8_cifar10.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/resnet152_cifar.py'
,
'../_base_/datasets/cifar10_bs16.py'
,
'../_base_/schedules/cifar10_bs128.py'
,
'../_base_/default_runtime.py'
]
openmmlab_test/mmclassification-speed-benchmark/configs/resnet/resnet152_b32x8_imagenet.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/resnet152.py'
,
'../_base_/datasets/imagenet_bs32.py'
,
'../_base_/schedules/imagenet_bs256.py'
,
'../_base_/default_runtime.py'
]
Prev
1
2
3
4
5
6
7
8
9
10
…
49
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment