Commit 85529f35 authored by unknown's avatar unknown
Browse files

添加openmmlab测试用例

parent b21b0c01
_base_ = [
'../common/mstrain-poly_3x_coco_instance.py',
'../_base_/models/mask_rcnn_r50_fpn.py'
]
model = dict(
pretrained='open-mmlab://regnetx_4.0gf',
backbone=dict(
_delete_=True,
type='RegNet',
arch='regnetx_4.0gf',
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch'),
neck=dict(
type='FPN',
in_channels=[80, 240, 560, 1360],
out_channels=256,
num_outs=5))
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.00005)
optimizer_config = dict(
_delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
_base_ = './mask_rcnn_regnetx-3.2GF_fpn_1x_coco.py'
model = dict(
pretrained='open-mmlab://regnetx_6.4gf',
backbone=dict(
type='RegNet',
arch='regnetx_6.4gf',
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch'),
neck=dict(
type='FPN',
in_channels=[168, 392, 784, 1624],
out_channels=256,
num_outs=5))
_base_ = [
'../common/mstrain-poly_3x_coco_instance.py',
'../_base_/models/mask_rcnn_r50_fpn.py'
]
model = dict(
pretrained='open-mmlab://regnetx_800mf',
backbone=dict(
_delete_=True,
type='RegNet',
arch='regnetx_800mf',
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch'),
neck=dict(
type='FPN',
in_channels=[64, 128, 288, 672],
out_channels=256,
num_outs=5))
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.00005)
optimizer_config = dict(
_delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
_base_ = './mask_rcnn_regnetx-3.2GF_fpn_1x_coco.py'
model = dict(
pretrained='open-mmlab://regnetx_8.0gf',
backbone=dict(
type='RegNet',
arch='regnetx_8.0gf',
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch'),
neck=dict(
type='FPN',
in_channels=[80, 240, 720, 1920],
out_channels=256,
num_outs=5))
Collections:
- Name: RegNet
Metadata:
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x NVIDIA V100 GPUs
Architecture:
- RegNet
Paper: https://arxiv.org/abs/2003.13678
README: configs/regnet/README.md
Models:
- Name: mask_rcnn_regnetx-3.2GF_fpn_1x_coco
In Collection: RegNet
Config: configs/regnet/mask_rcnn_regnetx-3.2GF_fpn_1x_coco.py
Metadata:
Training Memory (GB): 5.0
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 40.3
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 36.6
Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-3.2GF_fpn_1x_coco/mask_rcnn_regnetx-3.2GF_fpn_1x_coco_20200520_163141-2a9d1814.pth
- Name: mask_rcnn_regnetx-4GF_fpn_1x_coco
In Collection: RegNet
Config: configs/regnet/mask_rcnn_regnetx-4GF_fpn_1x_coco.py
Metadata:
Training Memory (GB): 5.5
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 41.5
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 37.4
Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-4GF_fpn_1x_coco/mask_rcnn_regnetx-4GF_fpn_1x_coco_20200517_180217-32e9c92d.pth
- Name: mask_rcnn_regnetx-6.4GF_fpn_1x_coco
In Collection: RegNet
Config: configs/regnet/mask_rcnn_regnetx-6.4GF_fpn_1x_coco.py
Metadata:
Training Memory (GB): 6.1
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 41.0
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 37.1
Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-6.4GF_fpn_1x_coco/mask_rcnn_regnetx-6.4GF_fpn_1x_coco_20200517_180439-3a7aae83.pth
- Name: mask_rcnn_regnetx-8GF_fpn_1x_coco
In Collection: RegNet
Config: configs/regnet/mask_rcnn_regnetx-8GF_fpn_1x_coco.py
Metadata:
Training Memory (GB): 6.4
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 41.7
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 37.5
Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-8GF_fpn_1x_coco/mask_rcnn_regnetx-8GF_fpn_1x_coco_20200517_180515-09daa87e.pth
- Name: mask_rcnn_regnetx-12GF_fpn_1x_coco
In Collection: RegNet
Config: configs/regnet/mask_rcnn_regnetx-12GF_fpn_1x_coco.py
Metadata:
Training Memory (GB): 7.4
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 42.2
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 38
Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-12GF_fpn_1x_coco/mask_rcnn_regnetx-12GF_fpn_1x_coco_20200517_180552-b538bd8b.pth
- Name: mask_rcnn_regnetx-3.2GF_fpn_mdconv_c3-c5_1x_coco
In Collection: RegNet
Config: configs/regnet/mask_rcnn_regnetx-3.2GF_fpn_mdconv_c3-c5_1x_coco.py
Metadata:
Training Memory (GB): 5.0
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 40.3
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 36.6
Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-3.2GF_fpn_mdconv_c3-c5_1x_coco/mask_rcnn_regnetx-3.2GF_fpn_mdconv_c3-c5_1x_coco_20200520_172726-75f40794.pth
- Name: faster_rcnn_regnetx-3.2GF_fpn_1x_coco
In Collection: RegNet
Config: configs/regnet/faster_rcnn_regnetx-3.2GF_fpn_1x_coco.py
Metadata:
Training Memory (GB): 4.5
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 39.9
Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/faster_rcnn_regnetx-3.2GF_fpn_1x_coco/faster_rcnn_regnetx-3.2GF_fpn_1x_coco_20200517_175927-126fd9bf.pth
- Name: faster_rcnn_regnetx-3.2GF_fpn_2x_coco
In Collection: RegNet
Config: configs/regnet/faster_rcnn_regnetx-3.2GF_fpn_2x_coco.py
Metadata:
Training Memory (GB): 4.5
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 41.1
Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/faster_rcnn_regnetx-3.2GF_fpn_2x_coco/faster_rcnn_regnetx-3.2GF_fpn_2x_coco_20200520_223955-e2081918.pth
- Name: retinanet_regnetx-800MF_fpn_1x_coco
In Collection: RegNet
Config: configs/regnet/retinanet_regnetx-800MF_fpn_1x_coco.py
Metadata:
Training Memory (GB): 2.5
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 35.6
Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/retinanet_regnetx-800MF_fpn_1x_coco/retinanet_regnetx-800MF_fpn_1x_coco_20200517_191403-f6f91d10.pth
- Name: retinanet_regnetx-1.6GF_fpn_1x_coco
In Collection: RegNet
Config: configs/regnet/retinanet_regnetx-1.6GF_fpn_1x_coco.py
Metadata:
Training Memory (GB): 3.3
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 37.3
Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/retinanet_regnetx-1.6GF_fpn_1x_coco/retinanet_regnetx-1.6GF_fpn_1x_coco_20200517_191403-37009a9d.pth
- Name: retinanet_regnetx-3.2GF_fpn_1x_coco
In Collection: RegNet
Config: configs/regnet/retinanet_regnetx-3.2GF_fpn_1x_coco.py
Metadata:
Training Memory (GB): 4.2
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 39.1
Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/retinanet_regnetx-3.2GF_fpn_1x_coco/retinanet_regnetx-3.2GF_fpn_1x_coco_20200520_163141-cb1509e8.pth
- Name: faster_rcnn_regnetx-400MF_fpn_mstrain_3x_coco
In Collection: RegNet
Config: configs/regnet/faster_rcnn_regnetx-400MF_fpn_mstrain_3x_coco.py
Metadata:
Training Memory (GB): 2.3
Epochs: 36
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 37.1
Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/faster_rcnn_regnetx-400MF_fpn_mstrain_3x_coco/faster_rcnn_regnetx-400MF_fpn_mstrain_3x_coco_20210526_095112-e1967c37.pth
- Name: faster_rcnn_regnetx-800MF_fpn_mstrain_3x_coco
In Collection: RegNet
Config: configs/regnet/faster_rcnn_regnetx-800MF_fpn_mstrain_3x_coco.py
Metadata:
Training Memory (GB): 2.8
Epochs: 36
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 38.8
Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/faster_rcnn_regnetx-800MF_fpn_mstrain_3x_coco/faster_rcnn_regnetx-800MF_fpn_mstrain_3x_coco_20210526_095118-a2c70b20.pth
- Name: faster_rcnn_regnetx-1.6GF_fpn_mstrain_3x_coco
In Collection: RegNet
Config: configs/regnet/faster_rcnn_regnetx-1.6GF_fpn_mstrain_3x_coco.py
Metadata:
Training Memory (GB): 3.4
Epochs: 36
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 40.5
Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/faster_rcnn_regnetx-1.6GF_fpn_mstrain_3x_coco/faster_rcnn_regnetx-1_20210526_095325-94aa46cc.pth
- Name: faster_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco
In Collection: RegNet
Config: configs/regnet/faster_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py
Metadata:
Training Memory (GB): 4.4
Epochs: 36
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 42.3
Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/faster_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco/faster_rcnn_regnetx-3_20210526_095152-e16a5227.pth
- Name: faster_rcnn_regnetx-4GF_fpn_mstrain_3x_coco
In Collection: RegNet
Config: configs/regnet/faster_rcnn_regnetx-4GF_fpn_mstrain_3x_coco.py
Metadata:
Training Memory (GB): 4.9
Epochs: 36
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 42.8
Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/faster_rcnn_regnetx-4GF_fpn_mstrain_3x_coco/faster_rcnn_regnetx-4GF_fpn_mstrain_3x_coco_20210526_095201-65eaf841.pth
- Name: mask_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco
In Collection: RegNet
Config: configs/regnet/mask_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py
Metadata:
Training Memory (GB): 5.0
Epochs: 36
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 43.1
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 38.7
Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco/mask_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco_20200521_202221-99879813.pth
- Name: mask_rcnn_regnetx-400MF_fpn_mstrain-poly_3x_coco
In Collection: RegNet
Config: configs/regnet/mask_rcnn_regnetx-400MF_fpn_mstrain-poly_3x_coco.py
Metadata:
Training Memory (GB): 2.5
Epochs: 36
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 37.6
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 34.4
Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-400MF_fpn_mstrain-poly_3x_coco/mask_rcnn_regnetx-400MF_fpn_mstrain-poly_3x_coco_20210601_235443-803b87a2.pth
- Name: mask_rcnn_regnetx-800MF_fpn_mstrain-poly_3x_coco
In Collection: RegNet
Config: configs/regnet/mask_rcnn_regnetx-800MF_fpn_mstrain-poly_3x_coco.py
Metadata:
Training Memory (GB): 2.9
Epochs: 36
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 39.5
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 36.1
Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-800MF_fpn_mstrain-poly_3x_coco/mask_rcnn_regnetx-800MF_fpn_mstrain-poly_3x_coco_20210602_210641-e843d02e.pth
- Name: mask_rcnn_regnetx-1.6GF_fpn_mstrain_3x_coco
In Collection: RegNet
Config: configs/regnet/mask_rcnn_regnetx-1.6GF_fpn_mstrain_3x_coco.py
Metadata:
Training Memory (GB): 3.6
Epochs: 36
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 40.9
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 37.5
Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-1.6GF_fpn_mstrain-poly_3x_coco/mask_rcnn_regnetx-1_20210602_210641-6e63e19c.pth
- Name: mask_rcnn_regnetx-4GF_fpn_mstrain_3x_coco
In Collection: RegNet
Config: configs/regnet/mask_rcnn_regnetx-4GF_fpn_mstrain_3x_coco.py
Metadata:
Training Memory (GB): 5.1
Epochs: 36
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 43.4
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 39.2
Weights: https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-4GF_fpn_mstrain-poly_3x_coco/mask_rcnn_regnetx-4GF_fpn_mstrain-poly_3x_coco_20210602_032621-c5900e99.pth
_base_ = './retinanet_regnetx-3.2GF_fpn_1x_coco.py'
model = dict(
pretrained='open-mmlab://regnetx_1.6gf',
backbone=dict(
type='RegNet',
arch='regnetx_1.6gf',
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch'),
neck=dict(
type='FPN',
in_channels=[72, 168, 408, 912],
out_channels=256,
num_outs=5))
_base_ = [
'../_base_/models/retinanet_r50_fpn.py',
'../_base_/datasets/coco_detection.py',
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
model = dict(
pretrained='open-mmlab://regnetx_3.2gf',
backbone=dict(
_delete_=True,
type='RegNet',
arch='regnetx_3.2gf',
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch'),
neck=dict(
type='FPN',
in_channels=[96, 192, 432, 1008],
out_channels=256,
num_outs=5))
img_norm_cfg = dict(
# The mean and std are used in PyCls when training RegNets
mean=[103.53, 116.28, 123.675],
std=[57.375, 57.12, 58.395],
to_rgb=False)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.00005)
optimizer_config = dict(
_delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
_base_ = './retinanet_regnetx-3.2GF_fpn_1x_coco.py'
model = dict(
pretrained='open-mmlab://regnetx_800mf',
backbone=dict(
type='RegNet',
arch='regnetx_800mf',
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch'),
neck=dict(
type='FPN',
in_channels=[64, 128, 288, 672],
out_channels=256,
num_outs=5))
# RepPoints: Point Set Representation for Object Detection
By [Ze Yang](https://yangze.tech/), [Shaohui Liu](http://b1ueber2y.me/), and [Han Hu](https://ancientmooner.github.io/).
We provide code support and configuration files to reproduce the results in the paper for
["RepPoints: Point Set Representation for Object Detection"](https://arxiv.org/abs/1904.11490) on COCO object detection.
## Introduction
<!-- [ALGORITHM] -->
**RepPoints**, initially described in [arXiv](https://arxiv.org/abs/1904.11490), is a new representation method for visual objects, on which visual understanding tasks are typically centered. Visual object representation, aiming at both geometric description and appearance feature extraction, is conventionally achieved by `bounding box + RoIPool (RoIAlign)`. The bounding box representation is convenient to use; however, it provides only a rectangular localization of objects that lacks geometric precision and may consequently degrade feature quality. Our new representation, RepPoints, models objects by a `point set` instead of a `bounding box`, which learns to adaptively position themselves over an object in a manner that circumscribes the object’s `spatial extent` and enables `semantically aligned feature extraction`. This richer and more flexible representation maintains the convenience of bounding boxes while facilitating various visual understanding applications. This repo demonstrated the effectiveness of RepPoints for COCO object detection.
Another feature of this repo is the demonstration of an `anchor-free detector`, which can be as effective as state-of-the-art anchor-based detection methods. The anchor-free detector can utilize either `bounding box` or `RepPoints` as the basic object representation.
<div align="center">
<img src="reppoints.png" width="400px" />
<p>Learning RepPoints in Object Detection.</p>
</div>
## Citing RepPoints
```
@inproceedings{yang2019reppoints,
title={RepPoints: Point Set Representation for Object Detection},
author={Yang, Ze and Liu, Shaohui and Hu, Han and Wang, Liwei and Lin, Stephen},
booktitle={The IEEE International Conference on Computer Vision (ICCV)},
month={Oct},
year={2019}
}
```
## Results and models
The results on COCO 2017val are shown in the table below.
| Method | Backbone | GN | Anchor | convert func | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
|:---------:|:-------------:|:---:|:------:|:------------:|:-------:|:--------:|:--------------:|:------:|:------:|:--------:|
| BBox | R-50-FPN | Y | single | - | 1x | 3.9 | 15.9 | 36.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/reppoints/bbox_r50_grid_fpn_gn-neck+head_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/reppoints/bbox_r50_grid_fpn_gn-neck%2Bhead_1x_coco/bbox_r50_grid_fpn_gn-neck%2Bhead_1x_coco_20200329-c98bfa96.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/reppoints/bbox_r50_grid_fpn_gn-neck%2Bhead_1x_coco/bbox_r50_grid_fpn_gn-neck%2Bhead_1x_coco_20200329_145916.log.json) |
| BBox | R-50-FPN | Y | none | - | 1x | 3.9 | 15.4 | 37.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/reppoints/bbox_r50_grid_center_fpn_gn-neck+Bhead_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/reppoints/bbox_r50_grid_center_fpn_gn-neck%2Bhead_1x_coco/bbox_r50_grid_center_fpn_gn-neck%2Bhead_1x_coco_20200330-00f73d58.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/reppoints/bbox_r50_grid_center_fpn_gn-neck%2Bhead_1x_coco/bbox_r50_grid_center_fpn_gn-neck%2Bhead_1x_coco_20200330_233609.log.json) |
| RepPoints | R-50-FPN | N | none | moment | 1x | 3.3 | 18.5 | 37.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/reppoints/reppoints_moment_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r50_fpn_1x_coco/reppoints_moment_r50_fpn_1x_coco_20200330-b73db8d1.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r50_fpn_1x_coco/reppoints_moment_r50_fpn_1x_coco_20200330_233609.log.json) |
| RepPoints | R-50-FPN | Y | none | moment | 1x | 3.9 | 17.5 | 38.1 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/reppoints/reppoints_moment_r50_fpn_gn-neck%2Bhead_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r50_fpn_gn-neck%2Bhead_1x_coco/reppoints_moment_r50_fpn_gn-neck%2Bhead_1x_coco_20200329-4b38409a.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r50_fpn_gn-neck%2Bhead_1x_coco/reppoints_moment_r50_fpn_gn-neck%2Bhead_1x_coco_20200329_145952.log.json) |
| RepPoints | R-50-FPN | Y | none | moment | 2x | 3.9 | - | 38.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/reppoints/reppoints_moment_r50_fpn_gn-neck+head_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r50_fpn_gn-neck%2Bhead_2x_coco/reppoints_moment_r50_fpn_gn-neck%2Bhead_2x_coco_20200329-91babaa2.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r50_fpn_gn-neck%2Bhead_2x_coco/reppoints_moment_r50_fpn_gn-neck%2Bhead_2x_coco_20200329_150020.log.json) |
| RepPoints | R-101-FPN | Y | none | moment | 2x | 5.8 | 13.7 | 40.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/reppoints/reppoints_moment_r101_fpn_gn-neck+head_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r101_fpn_gn-neck%2Bhead_2x_coco/reppoints_moment_r101_fpn_gn-neck%2Bhead_2x_coco_20200329-4fbc7310.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r101_fpn_gn-neck%2Bhead_2x_coco/reppoints_moment_r101_fpn_gn-neck%2Bhead_2x_coco_20200329_132205.log.json) |
| RepPoints | R-101-FPN-DCN | Y | none | moment | 2x | 5.9 | 12.1 | 42.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/reppoints/reppoints_moment_r101_fpn_dconv_c3-c5_gn-neck+head_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco/reppoints_moment_r101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco_20200329-3309fbf2.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco/reppoints_moment_r101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco_20200329_132134.log.json) |
| RepPoints | X-101-FPN-DCN | Y | none | moment | 2x | 7.1 | 9.3 | 44.2 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/reppoints/reppoints_moment_x101_fpn_dconv_c3-c5_gn-neck+head_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_x101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco/reppoints_moment_x101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco_20200329-f87da1ea.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_x101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco/reppoints_moment_x101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco_20200329_132201.log.json) |
**Notes:**
- `R-xx`, `X-xx` denote the ResNet and ResNeXt architectures, respectively.
- `DCN` denotes replacing 3x3 conv with the 3x3 deformable convolution in `c3-c5` stages of backbone.
- `none` in the `anchor` column means 2-d `center point` (x,y) is used to represent the initial object hypothesis. `single` denotes one 4-d anchor box (x,y,w,h) with IoU based label assign criterion is adopted.
- `moment`, `partial MinMax`, `MinMax` in the `convert func` column are three functions to convert a point set to a pseudo box.
- Note the results here are slightly different from those reported in the paper, due to framework change. While the original paper uses an [MXNet](https://mxnet.apache.org/) implementation, we re-implement the method in [PyTorch](https://pytorch.org/) based on mmdetection.
_base_ = './reppoints_moment_r50_fpn_gn-neck+head_1x_coco.py'
model = dict(bbox_head=dict(transform_method='minmax', use_grid_points=True))
_base_ = './reppoints_moment_r50_fpn_gn-neck+head_1x_coco.py'
model = dict(
bbox_head=dict(transform_method='minmax', use_grid_points=True),
# training and testing settings
train_cfg=dict(
init=dict(
assigner=dict(
_delete_=True,
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.4,
min_pos_iou=0,
ignore_iof_thr=-1))))
Collections:
- Name: RepPoints
Metadata:
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x NVIDIA V100 GPUs
Architecture:
- Group Normalization
- FPN
- RepPoints
- ResNet
Paper: https://arxiv.org/abs/1904.11490
README: configs/reppoints/README.md
Models:
- Name: bbox_r50_grid_fpn_gn-neck+head_1x_coco
In Collection: RepPoints
Config: configs/reppoints/bbox_r50_grid_fpn_gn-neck+head_1x_coco.py
Metadata:
Training Memory (GB): 3.9
inference time (s/im): 0.06289
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 36.4
Weights: https://download.openmmlab.com/mmdetection/v2.0/reppoints/bbox_r50_grid_fpn_gn-neck%2Bhead_1x_coco/bbox_r50_grid_fpn_gn-neck%2Bhead_1x_coco_20200329-c98bfa96.pth
- Name: bbox_r50_grid_center_fpn_gn-neck+Bhead_1x_coco
In Collection: RepPoints
Config: configs/reppoints/bbox_r50_grid_center_fpn_gn-neck+Bhead_1x_coco.py
Metadata:
Training Memory (GB): 3.9
inference time (s/im): 0.06494
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 37.4
Weights: https://download.openmmlab.com/mmdetection/v2.0/reppoints/bbox_r50_grid_center_fpn_gn-neck%2Bhead_1x_coco/bbox_r50_grid_center_fpn_gn-neck%2Bhead_1x_coco_20200330-00f73d58.pth
- Name: reppoints_moment_r50_fpn_1x_coco
In Collection: RepPoints
Config: configs/reppoints/reppoints_moment_r50_fpn_1x_coco.py
Metadata:
Training Memory (GB): 3.3
inference time (s/im): 0.05405
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 37.0
Weights: https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r50_fpn_1x_coco/reppoints_moment_r50_fpn_1x_coco_20200330-b73db8d1.pth
- Name: reppoints_moment_r50_fpn_gn-neck%2Bhead_1x_coco
In Collection: RepPoints
Config: configs/reppoints/reppoints_moment_r50_fpn_gn-neck%2Bhead_1x_coco.py
Metadata:
Training Memory (GB): 3.9
inference time (s/im): 0.05714
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 38.1
Weights: https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r50_fpn_gn-neck%2Bhead_1x_coco/reppoints_moment_r50_fpn_gn-neck%2Bhead_1x_coco_20200329-4b38409a.pth
- Name: reppoints_moment_r50_fpn_gn-neck+head_2x_coco
In Collection: RepPoints
Config: configs/reppoints/reppoints_moment_r50_fpn_gn-neck+head_2x_coco.py
Metadata:
Training Memory (GB): 3.9
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 38.6
Weights: https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r50_fpn_gn-neck%2Bhead_2x_coco/reppoints_moment_r50_fpn_gn-neck%2Bhead_2x_coco_20200329-91babaa2.pth
- Name: reppoints_moment_r101_fpn_gn-neck+head_2x_coco
In Collection: RepPoints
Config: configs/reppoints/reppoints_moment_r101_fpn_gn-neck+head_2x_coco.py
Metadata:
Training Memory (GB): 5.8
inference time (s/im): 0.07299
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 40.5
Weights: https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r101_fpn_gn-neck%2Bhead_2x_coco/reppoints_moment_r101_fpn_gn-neck%2Bhead_2x_coco_20200329-4fbc7310.pth
- Name: reppoints_moment_r101_fpn_dconv_c3-c5_gn-neck+head_2x_coco
In Collection: RepPoints
Config: configs/reppoints/reppoints_moment_r101_fpn_dconv_c3-c5_gn-neck+head_2x_coco.py
Metadata:
Training Memory (GB): 5.9
inference time (s/im): 0.08264
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 42.9
Weights: https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco/reppoints_moment_r101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco_20200329-3309fbf2.pth
- Name: reppoints_moment_x101_fpn_dconv_c3-c5_gn-neck+head_2x_coco
In Collection: RepPoints
Config: configs/reppoints/reppoints_moment_x101_fpn_dconv_c3-c5_gn-neck+head_2x_coco.py
Metadata:
Training Memory (GB): 7.1
inference time (s/im): 0.10753
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 44.2
Weights: https://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_x101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco/reppoints_moment_x101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco_20200329-f87da1ea.pth
_base_ = './reppoints_moment_r50_fpn_gn-neck+head_1x_coco.py'
model = dict(bbox_head=dict(transform_method='minmax'))
_base_ = './reppoints_moment_r50_fpn_gn-neck+head_2x_coco.py'
model = dict(
pretrained='torchvision://resnet101',
backbone=dict(
depth=101,
dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
stage_with_dcn=(False, True, True, True)))
_base_ = './reppoints_moment_r50_fpn_gn-neck+head_2x_coco.py'
model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
_base_ = [
'../_base_/datasets/coco_detection.py',
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
model = dict(
type='RepPointsDetector',
pretrained='torchvision://resnet50',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch'),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
start_level=1,
add_extra_convs='on_input',
num_outs=5),
bbox_head=dict(
type='RepPointsHead',
num_classes=80,
in_channels=256,
feat_channels=256,
point_feat_channels=256,
stacked_convs=3,
num_points=9,
gradient_mul=0.1,
point_strides=[8, 16, 32, 64, 128],
point_base_scale=4,
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox_init=dict(type='SmoothL1Loss', beta=0.11, loss_weight=0.5),
loss_bbox_refine=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0),
transform_method='moment'),
# training and testing settings
train_cfg=dict(
init=dict(
assigner=dict(type='PointAssigner', scale=4, pos_num=1),
allowed_border=-1,
pos_weight=-1,
debug=False),
refine=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.4,
min_pos_iou=0,
ignore_iof_thr=-1),
allowed_border=-1,
pos_weight=-1,
debug=False)),
test_cfg=dict(
nms_pre=1000,
min_bbox_size=0,
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.5),
max_per_img=100))
optimizer = dict(lr=0.01)
_base_ = './reppoints_moment_r50_fpn_1x_coco.py'
norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
model = dict(neck=dict(norm_cfg=norm_cfg), bbox_head=dict(norm_cfg=norm_cfg))
optimizer = dict(lr=0.01)
_base_ = './reppoints_moment_r50_fpn_gn-neck+head_1x_coco.py'
lr_config = dict(step=[16, 22])
runner = dict(type='EpochBasedRunner', max_epochs=24)
_base_ = './reppoints_moment_r50_fpn_gn-neck+head_2x_coco.py'
model = dict(
pretrained='open-mmlab://resnext101_32x4d',
backbone=dict(
type='ResNeXt',
depth=101,
groups=32,
base_width=4,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
style='pytorch',
dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
stage_with_dcn=(False, True, True, True)))
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment