Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
dcuai
dlexamples
Commits
85529f35
Commit
85529f35
authored
Jul 30, 2022
by
unknown
Browse files
添加openmmlab测试用例
parent
b21b0c01
Changes
977
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
619 additions
and
0 deletions
+619
-0
openmmlab_test/mmdetection-speed_xinpian/configs/paa/paa_r50_fpn_2x_coco.py
...etection-speed_xinpian/configs/paa/paa_r50_fpn_2x_coco.py
+3
-0
openmmlab_test/mmdetection-speed_xinpian/configs/paa/paa_r50_fpn_mstrain_3x_coco.py
...-speed_xinpian/configs/paa/paa_r50_fpn_mstrain_3x_coco.py
+20
-0
openmmlab_test/mmdetection-speed_xinpian/configs/pafpn/README.md
...ab_test/mmdetection-speed_xinpian/configs/pafpn/README.md
+26
-0
openmmlab_test/mmdetection-speed_xinpian/configs/pafpn/faster_rcnn_r50_pafpn_1x_coco.py
...ed_xinpian/configs/pafpn/faster_rcnn_r50_pafpn_1x_coco.py
+8
-0
openmmlab_test/mmdetection-speed_xinpian/configs/pafpn/metafile.yml
...test/mmdetection-speed_xinpian/configs/pafpn/metafile.yml
+27
-0
openmmlab_test/mmdetection-speed_xinpian/configs/pascal_voc/README.md
...st/mmdetection-speed_xinpian/configs/pascal_voc/README.md
+23
-0
openmmlab_test/mmdetection-speed_xinpian/configs/pascal_voc/faster_rcnn_r50_fpn_1x_voc0712.py
...pian/configs/pascal_voc/faster_rcnn_r50_fpn_1x_voc0712.py
+14
-0
openmmlab_test/mmdetection-speed_xinpian/configs/pascal_voc/faster_rcnn_r50_fpn_1x_voc0712_cocofmt.py
...figs/pascal_voc/faster_rcnn_r50_fpn_1x_voc0712_cocofmt.py
+75
-0
openmmlab_test/mmdetection-speed_xinpian/configs/pascal_voc/retinanet_r50_fpn_1x_voc0712.py
...inpian/configs/pascal_voc/retinanet_r50_fpn_1x_voc0712.py
+14
-0
openmmlab_test/mmdetection-speed_xinpian/configs/pascal_voc/ssd300_voc0712.py
...ection-speed_xinpian/configs/pascal_voc/ssd300_voc0712.py
+69
-0
openmmlab_test/mmdetection-speed_xinpian/configs/pascal_voc/ssd512_voc0712.py
...ection-speed_xinpian/configs/pascal_voc/ssd512_voc0712.py
+53
-0
openmmlab_test/mmdetection-speed_xinpian/configs/pisa/README.md
...lab_test/mmdetection-speed_xinpian/configs/pisa/README.md
+40
-0
openmmlab_test/mmdetection-speed_xinpian/configs/pisa/metafile.yml
..._test/mmdetection-speed_xinpian/configs/pisa/metafile.yml
+105
-0
openmmlab_test/mmdetection-speed_xinpian/configs/pisa/pisa_faster_rcnn_r50_fpn_1x_coco.py
..._xinpian/configs/pisa/pisa_faster_rcnn_r50_fpn_1x_coco.py
+30
-0
openmmlab_test/mmdetection-speed_xinpian/configs/pisa/pisa_faster_rcnn_x101_32x4d_fpn_1x_coco.py
...n/configs/pisa/pisa_faster_rcnn_x101_32x4d_fpn_1x_coco.py
+30
-0
openmmlab_test/mmdetection-speed_xinpian/configs/pisa/pisa_mask_rcnn_r50_fpn_1x_coco.py
...ed_xinpian/configs/pisa/pisa_mask_rcnn_r50_fpn_1x_coco.py
+30
-0
openmmlab_test/mmdetection-speed_xinpian/configs/pisa/pisa_mask_rcnn_x101_32x4d_fpn_1x_coco.py
...ian/configs/pisa/pisa_mask_rcnn_x101_32x4d_fpn_1x_coco.py
+30
-0
openmmlab_test/mmdetection-speed_xinpian/configs/pisa/pisa_retinanet_r50_fpn_1x_coco.py
...ed_xinpian/configs/pisa/pisa_retinanet_r50_fpn_1x_coco.py
+7
-0
openmmlab_test/mmdetection-speed_xinpian/configs/pisa/pisa_retinanet_x101_32x4d_fpn_1x_coco.py
...ian/configs/pisa/pisa_retinanet_x101_32x4d_fpn_1x_coco.py
+7
-0
openmmlab_test/mmdetection-speed_xinpian/configs/pisa/pisa_ssd300_coco.py
...mdetection-speed_xinpian/configs/pisa/pisa_ssd300_coco.py
+8
-0
No files found.
Too many changes to show.
To preserve performance only
977 of 977+
files are displayed.
Plain diff
Email patch
openmmlab_test/mmdetection-speed_xinpian/configs/paa/paa_r50_fpn_2x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./paa_r50_fpn_1x_coco.py'
lr_config
=
dict
(
step
=
[
16
,
22
])
runner
=
dict
(
type
=
'EpochBasedRunner'
,
max_epochs
=
24
)
openmmlab_test/mmdetection-speed_xinpian/configs/paa/paa_r50_fpn_mstrain_3x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./paa_r50_fpn_1x_coco.py'
img_norm_cfg
=
dict
(
mean
=
[
123.675
,
116.28
,
103.53
],
std
=
[
58.395
,
57.12
,
57.375
],
to_rgb
=
True
)
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
),
dict
(
type
=
'Resize'
,
img_scale
=
[(
1333
,
640
),
(
1333
,
800
)],
multiscale_mode
=
'range'
,
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
,
flip_ratio
=
0.5
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'DefaultFormatBundle'
),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_bboxes'
,
'gt_labels'
]),
]
data
=
dict
(
train
=
dict
(
pipeline
=
train_pipeline
))
lr_config
=
dict
(
step
=
[
28
,
34
])
runner
=
dict
(
type
=
'EpochBasedRunner'
,
max_epochs
=
36
)
openmmlab_test/mmdetection-speed_xinpian/configs/pafpn/README.md
0 → 100644
View file @
85529f35
# Path Aggregation Network for Instance Segmentation
## Introduction
<!-- [ALGORITHM] -->
```
@inproceedings{liu2018path,
author = {Shu Liu and
Lu Qi and
Haifang Qin and
Jianping Shi and
Jiaya Jia},
title = {Path Aggregation Network for Instance Segmentation},
booktitle = {Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2018}
}
```
## Results and Models
## Results and Models
| Backbone | style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
|:-------------:|:----------:|:-------:|:--------:|:--------------:|:------:|:-------:|:------:|:--------:|
| R-50-FPN | pytorch | 1x | 4.0 | 17.2 | 37.5 | |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/pafpn/faster_rcnn_r50_pafpn_1x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/pafpn/faster_rcnn_r50_pafpn_1x_coco/faster_rcnn_r50_pafpn_1x_coco_bbox_mAP-0.375_20200503_105836-b7b4b9bd.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/pafpn/faster_rcnn_r50_pafpn_1x_coco/faster_rcnn_r50_pafpn_1x_coco_20200503_105836.log.json
)
|
openmmlab_test/mmdetection-speed_xinpian/configs/pafpn/faster_rcnn_r50_pafpn_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
model
=
dict
(
neck
=
dict
(
type
=
'PAFPN'
,
in_channels
=
[
256
,
512
,
1024
,
2048
],
out_channels
=
256
,
num_outs
=
5
))
openmmlab_test/mmdetection-speed_xinpian/configs/pafpn/metafile.yml
0 → 100644
View file @
85529f35
Collections
:
-
Name
:
PAFPN
Metadata
:
Training Data
:
COCO
Training Techniques
:
-
SGD with Momentum
-
Weight Decay
Training Resources
:
8x NVIDIA V100 GPUs
Architecture
:
-
PAFPN
Paper
:
https://arxiv.org/abs/1803.01534
README
:
configs/pafpn/README.md
Models
:
-
Name
:
faster_rcnn_r50_pafpn_1x_coco
In Collection
:
PAFPN
Config
:
configs/pafpn/faster_rcnn_r50_pafpn_1x_coco.py
Metadata
:
Training Memory (GB)
:
4.0
inference time (s/im)
:
0.05814
Epochs
:
12
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
37.5
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/pafpn/faster_rcnn_r50_pafpn_1x_coco/faster_rcnn_r50_pafpn_1x_coco_bbox_mAP-0.375_20200503_105836-b7b4b9bd.pth
openmmlab_test/mmdetection-speed_xinpian/configs/pascal_voc/README.md
0 → 100644
View file @
85529f35
# PASCAL VOC Dataset
<!-- [DATASET] -->
```
@Article{Everingham10,
author = "Everingham, M. and Van~Gool, L. and Williams, C. K. I. and Winn, J. and Zisserman, A.",
title = "The Pascal Visual Object Classes (VOC) Challenge",
journal = "International Journal of Computer Vision",
volume = "88",
year = "2010",
number = "2",
month = jun,
pages = "303--338",
}
```
## Results and Models
| Architecture | Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
|:------------:|:---------:|:-------:|:-------:|:--------:|:--------------:|:------:|:------:|:--------:|
| Faster R-CNN | R-50 | pytorch | 1x | 2.6 | - | 79.5 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/pascal_voc/faster_rcnn_r50_fpn_1x_voc0712.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/pascal_voc/faster_rcnn_r50_fpn_1x_voc0712/faster_rcnn_r50_fpn_1x_voc0712_20200624-c9895d40.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/pascal_voc/faster_rcnn_r50_fpn_1x_voc0712/20200623_015208.log.json
)
|
| Retinanet | R-50 | pytorch | 1x | 2.1 | - | 77.3 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/pascal_voc/retinanet_r50_fpn_1x_voc0712.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/pascal_voc/retinanet_r50_fpn_1x_voc0712/retinanet_r50_fpn_1x_voc0712_20200617-47cbdd0e.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/pascal_voc/retinanet_r50_fpn_1x_voc0712/retinanet_r50_fpn_1x_voc0712_20200616_014642.log.json
)
|
openmmlab_test/mmdetection-speed_xinpian/configs/pascal_voc/faster_rcnn_r50_fpn_1x_voc0712.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/faster_rcnn_r50_fpn.py'
,
'../_base_/datasets/voc0712.py'
,
'../_base_/default_runtime.py'
]
model
=
dict
(
roi_head
=
dict
(
bbox_head
=
dict
(
num_classes
=
20
)))
# optimizer
optimizer
=
dict
(
type
=
'SGD'
,
lr
=
0.01
,
momentum
=
0.9
,
weight_decay
=
0.0001
)
optimizer_config
=
dict
(
grad_clip
=
None
)
# learning policy
# actual epoch = 3 * 3 = 9
lr_config
=
dict
(
policy
=
'step'
,
step
=
[
3
])
# runtime settings
runner
=
dict
(
type
=
'EpochBasedRunner'
,
max_epochs
=
4
)
# actual epoch = 4 * 3 = 12
openmmlab_test/mmdetection-speed_xinpian/configs/pascal_voc/faster_rcnn_r50_fpn_1x_voc0712_cocofmt.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/faster_rcnn_r50_fpn.py'
,
'../_base_/datasets/voc0712.py'
,
'../_base_/default_runtime.py'
]
model
=
dict
(
roi_head
=
dict
(
bbox_head
=
dict
(
num_classes
=
20
)))
CLASSES
=
(
'aeroplane'
,
'bicycle'
,
'bird'
,
'boat'
,
'bottle'
,
'bus'
,
'car'
,
'cat'
,
'chair'
,
'cow'
,
'diningtable'
,
'dog'
,
'horse'
,
'motorbike'
,
'person'
,
'pottedplant'
,
'sheep'
,
'sofa'
,
'train'
,
'tvmonitor'
)
# dataset settings
dataset_type
=
'CocoDataset'
data_root
=
'data/VOCdevkit/'
img_norm_cfg
=
dict
(
mean
=
[
123.675
,
116.28
,
103.53
],
std
=
[
58.395
,
57.12
,
57.375
],
to_rgb
=
True
)
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
),
dict
(
type
=
'Resize'
,
img_scale
=
(
1000
,
600
),
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
,
flip_ratio
=
0.5
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'DefaultFormatBundle'
),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_bboxes'
,
'gt_labels'
]),
]
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'MultiScaleFlipAug'
,
img_scale
=
(
1000
,
600
),
flip
=
False
,
transforms
=
[
dict
(
type
=
'Resize'
,
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
]),
])
]
data
=
dict
(
samples_per_gpu
=
2
,
workers_per_gpu
=
2
,
train
=
dict
(
type
=
'RepeatDataset'
,
times
=
3
,
dataset
=
dict
(
type
=
dataset_type
,
ann_file
=
'data/voc0712_trainval.json'
,
img_prefix
=
'data/VOCdevkit'
,
pipeline
=
train_pipeline
,
classes
=
CLASSES
)),
val
=
dict
(
type
=
dataset_type
,
ann_file
=
'data/voc07_test.json'
,
img_prefix
=
'data/VOCdevkit'
,
pipeline
=
test_pipeline
,
classes
=
CLASSES
),
test
=
dict
(
type
=
dataset_type
,
ann_file
=
'data/voc07_test.json'
,
img_prefix
=
'data/VOCdevkit'
,
pipeline
=
test_pipeline
,
classes
=
CLASSES
))
evaluation
=
dict
(
interval
=
1
,
metric
=
'bbox'
)
# optimizer
optimizer
=
dict
(
type
=
'SGD'
,
lr
=
0.01
,
momentum
=
0.9
,
weight_decay
=
0.0001
)
optimizer_config
=
dict
(
grad_clip
=
None
)
# learning policy
# actual epoch = 3 * 3 = 9
lr_config
=
dict
(
policy
=
'step'
,
step
=
[
3
])
# runtime settings
runner
=
dict
(
type
=
'EpochBasedRunner'
,
max_epochs
=
4
)
# actual epoch = 4 * 3 = 12
openmmlab_test/mmdetection-speed_xinpian/configs/pascal_voc/retinanet_r50_fpn_1x_voc0712.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/retinanet_r50_fpn.py'
,
'../_base_/datasets/voc0712.py'
,
'../_base_/default_runtime.py'
]
model
=
dict
(
bbox_head
=
dict
(
num_classes
=
20
))
# optimizer
optimizer
=
dict
(
type
=
'SGD'
,
lr
=
0.01
,
momentum
=
0.9
,
weight_decay
=
0.0001
)
optimizer_config
=
dict
(
grad_clip
=
None
)
# learning policy
# actual epoch = 3 * 3 = 9
lr_config
=
dict
(
policy
=
'step'
,
step
=
[
3
])
# runtime settings
runner
=
dict
(
type
=
'EpochBasedRunner'
,
max_epochs
=
4
)
# actual epoch = 4 * 3 = 12
openmmlab_test/mmdetection-speed_xinpian/configs/pascal_voc/ssd300_voc0712.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/ssd300.py'
,
'../_base_/datasets/voc0712.py'
,
'../_base_/default_runtime.py'
]
model
=
dict
(
bbox_head
=
dict
(
num_classes
=
20
,
anchor_generator
=
dict
(
basesize_ratio_range
=
(
0.2
,
0.9
))))
# dataset settings
dataset_type
=
'VOCDataset'
data_root
=
'data/VOCdevkit/'
img_norm_cfg
=
dict
(
mean
=
[
123.675
,
116.28
,
103.53
],
std
=
[
1
,
1
,
1
],
to_rgb
=
True
)
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
,
to_float32
=
True
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
),
dict
(
type
=
'PhotoMetricDistortion'
,
brightness_delta
=
32
,
contrast_range
=
(
0.5
,
1.5
),
saturation_range
=
(
0.5
,
1.5
),
hue_delta
=
18
),
dict
(
type
=
'Expand'
,
mean
=
img_norm_cfg
[
'mean'
],
to_rgb
=
img_norm_cfg
[
'to_rgb'
],
ratio_range
=
(
1
,
4
)),
dict
(
type
=
'MinIoURandomCrop'
,
min_ious
=
(
0.1
,
0.3
,
0.5
,
0.7
,
0.9
),
min_crop_size
=
0.3
),
dict
(
type
=
'Resize'
,
img_scale
=
(
300
,
300
),
keep_ratio
=
False
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'RandomFlip'
,
flip_ratio
=
0.5
),
dict
(
type
=
'DefaultFormatBundle'
),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_bboxes'
,
'gt_labels'
]),
]
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'MultiScaleFlipAug'
,
img_scale
=
(
300
,
300
),
flip
=
False
,
transforms
=
[
dict
(
type
=
'Resize'
,
keep_ratio
=
False
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
]),
])
]
data
=
dict
(
samples_per_gpu
=
8
,
workers_per_gpu
=
3
,
train
=
dict
(
type
=
'RepeatDataset'
,
times
=
10
,
dataset
=
dict
(
pipeline
=
train_pipeline
)),
val
=
dict
(
pipeline
=
test_pipeline
),
test
=
dict
(
pipeline
=
test_pipeline
))
# optimizer
optimizer
=
dict
(
type
=
'SGD'
,
lr
=
1e-3
,
momentum
=
0.9
,
weight_decay
=
5e-4
)
optimizer_config
=
dict
()
# learning policy
lr_config
=
dict
(
policy
=
'step'
,
warmup
=
'linear'
,
warmup_iters
=
500
,
warmup_ratio
=
0.001
,
step
=
[
16
,
20
])
checkpoint_config
=
dict
(
interval
=
1
)
# runtime settings
runner
=
dict
(
type
=
'EpochBasedRunner'
,
max_epochs
=
24
)
openmmlab_test/mmdetection-speed_xinpian/configs/pascal_voc/ssd512_voc0712.py
0 → 100644
View file @
85529f35
_base_
=
'ssd300_voc0712.py'
input_size
=
512
model
=
dict
(
backbone
=
dict
(
input_size
=
input_size
),
bbox_head
=
dict
(
in_channels
=
(
512
,
1024
,
512
,
256
,
256
,
256
,
256
),
anchor_generator
=
dict
(
input_size
=
input_size
,
strides
=
[
8
,
16
,
32
,
64
,
128
,
256
,
512
],
basesize_ratio_range
=
(
0.15
,
0.9
),
ratios
=
([
2
],
[
2
,
3
],
[
2
,
3
],
[
2
,
3
],
[
2
,
3
],
[
2
],
[
2
]))))
img_norm_cfg
=
dict
(
mean
=
[
123.675
,
116.28
,
103.53
],
std
=
[
1
,
1
,
1
],
to_rgb
=
True
)
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
,
to_float32
=
True
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
),
dict
(
type
=
'PhotoMetricDistortion'
,
brightness_delta
=
32
,
contrast_range
=
(
0.5
,
1.5
),
saturation_range
=
(
0.5
,
1.5
),
hue_delta
=
18
),
dict
(
type
=
'Expand'
,
mean
=
img_norm_cfg
[
'mean'
],
to_rgb
=
img_norm_cfg
[
'to_rgb'
],
ratio_range
=
(
1
,
4
)),
dict
(
type
=
'MinIoURandomCrop'
,
min_ious
=
(
0.1
,
0.3
,
0.5
,
0.7
,
0.9
),
min_crop_size
=
0.3
),
dict
(
type
=
'Resize'
,
img_scale
=
(
512
,
512
),
keep_ratio
=
False
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'RandomFlip'
,
flip_ratio
=
0.5
),
dict
(
type
=
'DefaultFormatBundle'
),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_bboxes'
,
'gt_labels'
]),
]
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'MultiScaleFlipAug'
,
img_scale
=
(
512
,
512
),
flip
=
False
,
transforms
=
[
dict
(
type
=
'Resize'
,
keep_ratio
=
False
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
]),
])
]
data
=
dict
(
train
=
dict
(
dataset
=
dict
(
pipeline
=
train_pipeline
)),
val
=
dict
(
pipeline
=
test_pipeline
),
test
=
dict
(
pipeline
=
test_pipeline
))
openmmlab_test/mmdetection-speed_xinpian/configs/pisa/README.md
0 → 100644
View file @
85529f35
# Prime Sample Attention in Object Detection
## Introduction
<!-- [ALGORITHM] -->
```
latex
@inproceedings
{
cao2019prime,
title=
{
Prime sample attention in object detection
}
,
author=
{
Cao, Yuhang and Chen, Kai and Loy, Chen Change and Lin, Dahua
}
,
booktitle=
{
IEEE Conference on Computer Vision and Pattern Recognition
}
,
year=
{
2020
}
}
```
## Results and models
| PISA | Network | Backbone | Lr schd | box AP | mask AP | Config | Download |
|:----:|:-------:|:-------------------:|:-------:|:------:|:-------:|:------:|:--------:|
| × | Faster R-CNN | R-50-FPN | 1x | 36.4 | | - |
| √ | Faster R-CNN | R-50-FPN | 1x | 38.4 | |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/pisa/pisa_faster_rcnn_r50_fpn_1x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_faster_rcnn_r50_fpn_1x_coco/pisa_faster_rcnn_r50_fpn_1x_coco-dea93523.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_faster_rcnn_r50_fpn_1x_coco/pisa_faster_rcnn_r50_fpn_1x_coco_20200506_185619.log.json
)
|
| × | Faster R-CNN | X101-32x4d-FPN | 1x | 40.1 | | - |
| √ | Faster R-CNN | X101-32x4d-FPN | 1x | 41.9 | |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/pisa/pisa_faster_rcnn_x101_32x4d_fpn_1x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_faster_rcnn_x101_32x4d_fpn_1x_coco/pisa_faster_rcnn_x101_32x4d_fpn_1x_coco-e4accec4.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_faster_rcnn_x101_32x4d_fpn_1x_coco/pisa_faster_rcnn_x101_32x4d_fpn_1x_coco_20200505_181503.log.json
)
|
| × | Mask R-CNN | R-50-FPN | 1x | 37.3 | 34.2 | - |
| √ | Mask R-CNN | R-50-FPN | 1x | 39.1 | 35.2 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/pisa/pisa_mask_rcnn_r50_fpn_1x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_mask_rcnn_r50_fpn_1x_coco/pisa_mask_rcnn_r50_fpn_1x_coco-dfcedba6.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_mask_rcnn_r50_fpn_1x_coco/pisa_mask_rcnn_r50_fpn_1x_coco_20200508_150500.log.json
)
|
| × | Mask R-CNN | X101-32x4d-FPN | 1x | 41.1 | 37.1 | - |
| √ | Mask R-CNN | X101-32x4d-FPN | 1x | | | |
| × | RetinaNet | R-50-FPN | 1x | 35.6 | | - |
| √ | RetinaNet | R-50-FPN | 1x | 36.9 | |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/pisa/pisa_retinanet_r50_fpn_1x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_retinanet_r50_fpn_1x_coco/pisa_retinanet_r50_fpn_1x_coco-76409952.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_retinanet_r50_fpn_1x_coco/pisa_retinanet_r50_fpn_1x_coco_20200504_014311.log.json
)
|
| × | RetinaNet | X101-32x4d-FPN | 1x | 39.0 | | - |
| √ | RetinaNet | X101-32x4d-FPN | 1x | 40.7 | |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/pisa/pisa_retinanet_x101_32x4d_fpn_1x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_retinanet_x101_32x4d_fpn_1x_coco/pisa_retinanet_x101_32x4d_fpn_1x_coco-a0c13c73.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_retinanet_x101_32x4d_fpn_1x_coco/pisa_retinanet_x101_32x4d_fpn_1x_coco_20200505_001404.log.json
)
|
| × | SSD300 | VGG16 | 1x | 25.6 | | - |
| √ | SSD300 | VGG16 | 1x | 27.6 | |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/pisa/pisa_ssd300_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_ssd300_coco/pisa_ssd300_coco-710e3ac9.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_ssd300_coco/pisa_ssd300_coco_20200504_144325.log.json
)
|
| × | SSD300 | VGG16 | 1x | 29.3 | | - |
| √ | SSD300 | VGG16 | 1x | 31.8 | |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/pisa/pisa_ssd512_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_ssd512_coco/pisa_ssd512_coco-247addee.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_ssd512_coco/pisa_ssd512_coco_20200508_131030.log.json
)
|
**Notes:**
-
In the original paper, all models are trained and tested on mmdet v1.x, thus results may not be exactly the same with this release on v2.0.
-
It is noted PISA only modifies the training pipeline so the inference time remains the same with the baseline.
openmmlab_test/mmdetection-speed_xinpian/configs/pisa/metafile.yml
0 → 100644
View file @
85529f35
Collections
:
-
Name
:
PISA
Metadata
:
Training Data
:
COCO
Training Techniques
:
-
SGD with Momentum
-
Weight Decay
Training Resources
:
8x NVIDIA V100 GPUs
Architecture
:
-
FPN
-
PISA
-
RPN
-
ResNet
-
RoIPool
Paper
:
https://arxiv.org/abs/1904.04821
README
:
configs/pisa/README.md
Models
:
-
Name
:
pisa_faster_rcnn_r50_fpn_1x_coco
In Collection
:
PISA
Config
:
configs/pisa/pisa_faster_rcnn_r50_fpn_1x_coco.py
Metadata
:
Epochs
:
12
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
38.4
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_faster_rcnn_r50_fpn_1x_coco/pisa_faster_rcnn_r50_fpn_1x_coco-dea93523.pth
-
Name
:
pisa_faster_rcnn_x101_32x4d_fpn_1x_coco
In Collection
:
PISA
Config
:
configs/pisa/pisa_faster_rcnn_x101_32x4d_fpn_1x_coco.py
Metadata
:
Epochs
:
12
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
41.9
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_faster_rcnn_x101_32x4d_fpn_1x_coco/pisa_faster_rcnn_x101_32x4d_fpn_1x_coco-e4accec4.pth
-
Name
:
pisa_mask_rcnn_r50_fpn_1x_coco
In Collection
:
PISA
Config
:
configs/pisa/pisa_mask_rcnn_r50_fpn_1x_coco.py
Metadata
:
Epochs
:
12
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
39.1
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
35.2
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_mask_rcnn_r50_fpn_1x_coco/pisa_mask_rcnn_r50_fpn_1x_coco-dfcedba6.pth
-
Name
:
pisa_retinanet_r50_fpn_1x_coco
In Collection
:
PISA
Config
:
configs/pisa/pisa_retinanet_r50_fpn_1x_coco.py
Metadata
:
Epochs
:
12
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
36.9
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_retinanet_r50_fpn_1x_coco/pisa_retinanet_r50_fpn_1x_coco-76409952.pth
-
Name
:
pisa_retinanet_x101_32x4d_fpn_1x_coco
In Collection
:
PISA
Config
:
configs/pisa/pisa_retinanet_x101_32x4d_fpn_1x_coco.py
Metadata
:
Epochs
:
12
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
40.7
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_retinanet_x101_32x4d_fpn_1x_coco/pisa_retinanet_x101_32x4d_fpn_1x_coco-a0c13c73.pth
-
Name
:
pisa_ssd300_coco
In Collection
:
PISA
Config
:
configs/pisa/pisa_ssd300_coco.py
Metadata
:
Epochs
:
24
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
27.6
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_ssd300_coco/pisa_ssd300_coco-710e3ac9.pth
-
Name
:
pisa_ssd512_coco
In Collection
:
PISA
Config
:
configs/pisa/pisa_ssd512_coco.py
Metadata
:
Epochs
:
24
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
31.8
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/pisa/pisa_ssd512_coco/pisa_ssd512_coco-247addee.pth
openmmlab_test/mmdetection-speed_xinpian/configs/pisa/pisa_faster_rcnn_r50_fpn_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
model
=
dict
(
roi_head
=
dict
(
type
=
'PISARoIHead'
,
bbox_head
=
dict
(
loss_bbox
=
dict
(
type
=
'SmoothL1Loss'
,
beta
=
1.0
,
loss_weight
=
1.0
))),
train_cfg
=
dict
(
rpn_proposal
=
dict
(
nms_pre
=
2000
,
max_per_img
=
2000
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.7
),
min_bbox_size
=
0
),
rcnn
=
dict
(
sampler
=
dict
(
type
=
'ScoreHLRSampler'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
,
k
=
0.5
,
bias
=
0.
),
isr
=
dict
(
k
=
2
,
bias
=
0
),
carl
=
dict
(
k
=
1
,
bias
=
0.2
))),
test_cfg
=
dict
(
rpn
=
dict
(
nms_pre
=
2000
,
max_per_img
=
2000
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.7
),
min_bbox_size
=
0
)))
openmmlab_test/mmdetection-speed_xinpian/configs/pisa/pisa_faster_rcnn_x101_32x4d_fpn_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'../faster_rcnn/faster_rcnn_x101_32x4d_fpn_1x_coco.py'
model
=
dict
(
roi_head
=
dict
(
type
=
'PISARoIHead'
,
bbox_head
=
dict
(
loss_bbox
=
dict
(
type
=
'SmoothL1Loss'
,
beta
=
1.0
,
loss_weight
=
1.0
))),
train_cfg
=
dict
(
rpn_proposal
=
dict
(
nms_pre
=
2000
,
max_per_img
=
2000
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.7
),
min_bbox_size
=
0
),
rcnn
=
dict
(
sampler
=
dict
(
type
=
'ScoreHLRSampler'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
,
k
=
0.5
,
bias
=
0.
),
isr
=
dict
(
k
=
2
,
bias
=
0
),
carl
=
dict
(
k
=
1
,
bias
=
0.2
))),
test_cfg
=
dict
(
rpn
=
dict
(
nms_pre
=
2000
,
max_per_img
=
2000
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.7
),
min_bbox_size
=
0
)))
openmmlab_test/mmdetection-speed_xinpian/configs/pisa/pisa_mask_rcnn_r50_fpn_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
model
=
dict
(
roi_head
=
dict
(
type
=
'PISARoIHead'
,
bbox_head
=
dict
(
loss_bbox
=
dict
(
type
=
'SmoothL1Loss'
,
beta
=
1.0
,
loss_weight
=
1.0
))),
train_cfg
=
dict
(
rpn_proposal
=
dict
(
nms_pre
=
2000
,
max_per_img
=
2000
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.7
),
min_bbox_size
=
0
),
rcnn
=
dict
(
sampler
=
dict
(
type
=
'ScoreHLRSampler'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
,
k
=
0.5
,
bias
=
0.
),
isr
=
dict
(
k
=
2
,
bias
=
0
),
carl
=
dict
(
k
=
1
,
bias
=
0.2
))),
test_cfg
=
dict
(
rpn
=
dict
(
nms_pre
=
2000
,
max_per_img
=
2000
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.7
),
min_bbox_size
=
0
)))
openmmlab_test/mmdetection-speed_xinpian/configs/pisa/pisa_mask_rcnn_x101_32x4d_fpn_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'../mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco.py'
model
=
dict
(
roi_head
=
dict
(
type
=
'PISARoIHead'
,
bbox_head
=
dict
(
loss_bbox
=
dict
(
type
=
'SmoothL1Loss'
,
beta
=
1.0
,
loss_weight
=
1.0
))),
train_cfg
=
dict
(
rpn_proposal
=
dict
(
nms_pre
=
2000
,
max_per_img
=
2000
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.7
),
min_bbox_size
=
0
),
rcnn
=
dict
(
sampler
=
dict
(
type
=
'ScoreHLRSampler'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
,
k
=
0.5
,
bias
=
0.
),
isr
=
dict
(
k
=
2
,
bias
=
0
),
carl
=
dict
(
k
=
1
,
bias
=
0.2
))),
test_cfg
=
dict
(
rpn
=
dict
(
nms_pre
=
2000
,
max_per_img
=
2000
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.7
),
min_bbox_size
=
0
)))
openmmlab_test/mmdetection-speed_xinpian/configs/pisa/pisa_retinanet_r50_fpn_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'../retinanet/retinanet_r50_fpn_1x_coco.py'
model
=
dict
(
bbox_head
=
dict
(
type
=
'PISARetinaHead'
,
loss_bbox
=
dict
(
type
=
'SmoothL1Loss'
,
beta
=
0.11
,
loss_weight
=
1.0
)),
train_cfg
=
dict
(
isr
=
dict
(
k
=
2.
,
bias
=
0.
),
carl
=
dict
(
k
=
1.
,
bias
=
0.2
)))
openmmlab_test/mmdetection-speed_xinpian/configs/pisa/pisa_retinanet_x101_32x4d_fpn_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'../retinanet/retinanet_x101_32x4d_fpn_1x_coco.py'
model
=
dict
(
bbox_head
=
dict
(
type
=
'PISARetinaHead'
,
loss_bbox
=
dict
(
type
=
'SmoothL1Loss'
,
beta
=
0.11
,
loss_weight
=
1.0
)),
train_cfg
=
dict
(
isr
=
dict
(
k
=
2.
,
bias
=
0.
),
carl
=
dict
(
k
=
1.
,
bias
=
0.2
)))
openmmlab_test/mmdetection-speed_xinpian/configs/pisa/pisa_ssd300_coco.py
0 → 100644
View file @
85529f35
_base_
=
'../ssd/ssd300_coco.py'
model
=
dict
(
bbox_head
=
dict
(
type
=
'PISASSDHead'
),
train_cfg
=
dict
(
isr
=
dict
(
k
=
2.
,
bias
=
0.
),
carl
=
dict
(
k
=
1.
,
bias
=
0.2
)))
optimizer_config
=
dict
(
_delete_
=
True
,
grad_clip
=
dict
(
max_norm
=
35
,
norm_type
=
2
))
Prev
1
…
41
42
43
44
45
46
47
48
49
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment