Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
dcuai
dlexamples
Commits
85529f35
Commit
85529f35
authored
Jul 30, 2022
by
unknown
Browse files
添加openmmlab测试用例
parent
b21b0c01
Changes
977
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
750 additions
and
0 deletions
+750
-0
openmmlab_test/mmdetection-speed_xinpian/configs/ms_rcnn/ms_rcnn_r50_caffe_fpn_2x_coco.py
..._xinpian/configs/ms_rcnn/ms_rcnn_r50_caffe_fpn_2x_coco.py
+4
-0
openmmlab_test/mmdetection-speed_xinpian/configs/ms_rcnn/ms_rcnn_r50_fpn_1x_coco.py
...-speed_xinpian/configs/ms_rcnn/ms_rcnn_r50_fpn_1x_coco.py
+16
-0
openmmlab_test/mmdetection-speed_xinpian/configs/ms_rcnn/ms_rcnn_x101_32x4d_fpn_1x_coco.py
...xinpian/configs/ms_rcnn/ms_rcnn_x101_32x4d_fpn_1x_coco.py
+13
-0
openmmlab_test/mmdetection-speed_xinpian/configs/ms_rcnn/ms_rcnn_x101_64x4d_fpn_1x_coco.py
...xinpian/configs/ms_rcnn/ms_rcnn_x101_64x4d_fpn_1x_coco.py
+13
-0
openmmlab_test/mmdetection-speed_xinpian/configs/ms_rcnn/ms_rcnn_x101_64x4d_fpn_2x_coco.py
...xinpian/configs/ms_rcnn/ms_rcnn_x101_64x4d_fpn_2x_coco.py
+4
-0
openmmlab_test/mmdetection-speed_xinpian/configs/nas_fcos/README.md
...test/mmdetection-speed_xinpian/configs/nas_fcos/README.md
+25
-0
openmmlab_test/mmdetection-speed_xinpian/configs/nas_fcos/metafile.yml
...t/mmdetection-speed_xinpian/configs/nas_fcos/metafile.yml
+39
-0
openmmlab_test/mmdetection-speed_xinpian/configs/nas_fcos/nas_fcos_fcoshead_r50_caffe_fpn_gn-head_4x4_1x_coco.py
...os/nas_fcos_fcoshead_r50_caffe_fpn_gn-head_4x4_1x_coco.py
+98
-0
openmmlab_test/mmdetection-speed_xinpian/configs/nas_fcos/nas_fcos_nashead_r50_caffe_fpn_gn-head_4x4_1x_coco.py
...cos/nas_fcos_nashead_r50_caffe_fpn_gn-head_4x4_1x_coco.py
+97
-0
openmmlab_test/mmdetection-speed_xinpian/configs/nas_fpn/README.md
..._test/mmdetection-speed_xinpian/configs/nas_fpn/README.md
+26
-0
openmmlab_test/mmdetection-speed_xinpian/configs/nas_fpn/metafile.yml
...st/mmdetection-speed_xinpian/configs/nas_fpn/metafile.yml
+42
-0
openmmlab_test/mmdetection-speed_xinpian/configs/nas_fpn/retinanet_r50_fpn_crop640_50e_coco.py
...ian/configs/nas_fpn/retinanet_r50_fpn_crop640_50e_coco.py
+80
-0
openmmlab_test/mmdetection-speed_xinpian/configs/nas_fpn/retinanet_r50_nasfpn_crop640_50e_coco.py
.../configs/nas_fpn/retinanet_r50_nasfpn_crop640_50e_coco.py
+79
-0
openmmlab_test/mmdetection-speed_xinpian/configs/paa/README.md
...mlab_test/mmdetection-speed_xinpian/configs/paa/README.md
+35
-0
openmmlab_test/mmdetection-speed_xinpian/configs/paa/metafile.yml
...b_test/mmdetection-speed_xinpian/configs/paa/metafile.yml
+99
-0
openmmlab_test/mmdetection-speed_xinpian/configs/paa/paa_r101_fpn_1x_coco.py
...tection-speed_xinpian/configs/paa/paa_r101_fpn_1x_coco.py
+2
-0
openmmlab_test/mmdetection-speed_xinpian/configs/paa/paa_r101_fpn_2x_coco.py
...tection-speed_xinpian/configs/paa/paa_r101_fpn_2x_coco.py
+3
-0
openmmlab_test/mmdetection-speed_xinpian/configs/paa/paa_r101_fpn_mstrain_3x_coco.py
...speed_xinpian/configs/paa/paa_r101_fpn_mstrain_3x_coco.py
+2
-0
openmmlab_test/mmdetection-speed_xinpian/configs/paa/paa_r50_fpn_1.5x_coco.py
...ection-speed_xinpian/configs/paa/paa_r50_fpn_1.5x_coco.py
+3
-0
openmmlab_test/mmdetection-speed_xinpian/configs/paa/paa_r50_fpn_1x_coco.py
...etection-speed_xinpian/configs/paa/paa_r50_fpn_1x_coco.py
+70
-0
No files found.
Too many changes to show.
To preserve performance only
977 of 977+
files are displayed.
Plain diff
Email patch
openmmlab_test/mmdetection-speed_xinpian/configs/ms_rcnn/ms_rcnn_r50_caffe_fpn_2x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./ms_rcnn_r50_caffe_fpn_1x_coco.py'
# learning policy
lr_config
=
dict
(
step
=
[
16
,
22
])
runner
=
dict
(
type
=
'EpochBasedRunner'
,
max_epochs
=
24
)
openmmlab_test/mmdetection-speed_xinpian/configs/ms_rcnn/ms_rcnn_r50_fpn_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
model
=
dict
(
type
=
'MaskScoringRCNN'
,
roi_head
=
dict
(
type
=
'MaskScoringRoIHead'
,
mask_iou_head
=
dict
(
type
=
'MaskIoUHead'
,
num_convs
=
4
,
num_fcs
=
2
,
roi_feat_size
=
14
,
in_channels
=
256
,
conv_out_channels
=
256
,
fc_out_channels
=
1024
,
num_classes
=
80
)),
# model training and testing settings
train_cfg
=
dict
(
rcnn
=
dict
(
mask_thr_binary
=
0.5
)))
openmmlab_test/mmdetection-speed_xinpian/configs/ms_rcnn/ms_rcnn_x101_32x4d_fpn_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./ms_rcnn_r50_fpn_1x_coco.py'
model
=
dict
(
pretrained
=
'open-mmlab://resnext101_32x4d'
,
backbone
=
dict
(
type
=
'ResNeXt'
,
depth
=
101
,
groups
=
32
,
base_width
=
4
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
),
style
=
'pytorch'
))
openmmlab_test/mmdetection-speed_xinpian/configs/ms_rcnn/ms_rcnn_x101_64x4d_fpn_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./ms_rcnn_r50_fpn_1x_coco.py'
model
=
dict
(
pretrained
=
'open-mmlab://resnext101_64x4d'
,
backbone
=
dict
(
type
=
'ResNeXt'
,
depth
=
101
,
groups
=
64
,
base_width
=
4
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
),
style
=
'pytorch'
))
openmmlab_test/mmdetection-speed_xinpian/configs/ms_rcnn/ms_rcnn_x101_64x4d_fpn_2x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./ms_rcnn_x101_64x4d_fpn_1x_coco.py'
# learning policy
lr_config
=
dict
(
step
=
[
16
,
22
])
runner
=
dict
(
type
=
'EpochBasedRunner'
,
max_epochs
=
24
)
openmmlab_test/mmdetection-speed_xinpian/configs/nas_fcos/README.md
0 → 100644
View file @
85529f35
# NAS-FCOS: Fast Neural Architecture Search for Object Detection
## Introduction
<!-- [ALGORITHM] -->
```
latex
@article
{
wang2019fcos,
title=
{
Nas-fcos: Fast neural architecture search for object detection
}
,
author=
{
Wang, Ning and Gao, Yang and Chen, Hao and Wang, Peng and Tian, Zhi and Shen, Chunhua
}
,
journal=
{
arXiv preprint arXiv:1906.04423
}
,
year=
{
2019
}
}
```
## Results and Models
| Head | Backbone | Style | GN-head | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
|:---------:|:---------:|:-------:|:-------:|:-------:|:--------:|:--------------:|:------:|:------:|:--------:|
| NAS-FCOSHead | R-50 | caffe | Y | 1x | | | 39.4 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/nas_fcos/nas_fcos_nashead_r50_caffe_fpn_gn-head_4x4_1x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/nas_fcos/nas_fcos_nashead_r50_caffe_fpn_gn-head_4x4_1x_coco/nas_fcos_nashead_r50_caffe_fpn_gn-head_4x4_1x_coco_20200520-1bdba3ce.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/nas_fcos/nas_fcos_nashead_r50_caffe_fpn_gn-head_4x4_1x_coco/nas_fcos_nashead_r50_caffe_fpn_gn-head_4x4_1x_coco_20200520.log.json
)
|
| FCOSHead | R-50 | caffe | Y | 1x | | | 38.5 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/nas_fcos/nas_fcos_fcoshead_r50_caffe_fpn_gn-head_4x4_1x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/nas_fcos/nas_fcos_fcoshead_r50_caffe_fpn_gn-head_4x4_1x_coco/nas_fcos_fcoshead_r50_caffe_fpn_gn-head_4x4_1x_coco_20200521-7fdcbce0.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/nas_fcos/nas_fcos_fcoshead_r50_caffe_fpn_gn-head_4x4_1x_coco/nas_fcos_fcoshead_r50_caffe_fpn_gn-head_4x4_1x_coco_20200521.log.json
)
|
**Notes:**
-
To be consistent with the author's implementation, we use 4 GPUs with 4 images/GPU.
openmmlab_test/mmdetection-speed_xinpian/configs/nas_fcos/metafile.yml
0 → 100644
View file @
85529f35
Collections
:
-
Name
:
NAS-FCOS
Metadata
:
Training Data
:
COCO
Training Techniques
:
-
SGD with Momentum
-
Weight Decay
Training Resources
:
4x NVIDIA V100 GPUs
Architecture
:
-
FPN
-
NAS-FCOS
-
ResNet
Paper
:
https://arxiv.org/abs/1906.04423
README
:
configs/nas_fcos/README.md
Models
:
-
Name
:
nas_fcos_nashead_r50_caffe_fpn_gn-head_4x4_1x_coco
In Collection
:
NAS-FCOS
Config
:
configs/nas_fcos/nas_fcos_nashead_r50_caffe_fpn_gn-head_4x4_1x_coco.py
Metadata
:
Epochs
:
12
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
39.4
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/nas_fcos/nas_fcos_nashead_r50_caffe_fpn_gn-head_4x4_1x_coco/nas_fcos_nashead_r50_caffe_fpn_gn-head_4x4_1x_coco_20200520-1bdba3ce.pth
-
Name
:
nas_fcos_fcoshead_r50_caffe_fpn_gn-head_4x4_1x_coco
In Collection
:
NAS-FCOS
Config
:
configs/nas_fcos/nas_fcos_fcoshead_r50_caffe_fpn_gn-head_4x4_1x_coco.py
Metadata
:
Epochs
:
12
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
38.5
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/nas_fcos/nas_fcos_fcoshead_r50_caffe_fpn_gn-head_4x4_1x_coco/nas_fcos_fcoshead_r50_caffe_fpn_gn-head_4x4_1x_coco_20200521-7fdcbce0.pth
openmmlab_test/mmdetection-speed_xinpian/configs/nas_fcos/nas_fcos_fcoshead_r50_caffe_fpn_gn-head_4x4_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/datasets/coco_detection.py'
,
'../_base_/schedules/schedule_1x.py'
,
'../_base_/default_runtime.py'
]
model
=
dict
(
type
=
'NASFCOS'
,
pretrained
=
'open-mmlab://detectron2/resnet50_caffe'
,
backbone
=
dict
(
type
=
'ResNet'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
False
,
eps
=
0
),
style
=
'caffe'
),
neck
=
dict
(
type
=
'NASFCOS_FPN'
,
in_channels
=
[
256
,
512
,
1024
,
2048
],
out_channels
=
256
,
start_level
=
1
,
add_extra_convs
=
True
,
num_outs
=
5
,
norm_cfg
=
dict
(
type
=
'BN'
),
conv_cfg
=
dict
(
type
=
'DCNv2'
,
deform_groups
=
2
)),
bbox_head
=
dict
(
type
=
'FCOSHead'
,
num_classes
=
80
,
in_channels
=
256
,
stacked_convs
=
4
,
feat_channels
=
256
,
strides
=
[
8
,
16
,
32
,
64
,
128
],
norm_cfg
=
dict
(
type
=
'GN'
,
num_groups
=
32
),
loss_cls
=
dict
(
type
=
'FocalLoss'
,
use_sigmoid
=
True
,
gamma
=
2.0
,
alpha
=
0.25
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'IoULoss'
,
loss_weight
=
1.0
),
loss_centerness
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
True
,
loss_weight
=
1.0
)),
train_cfg
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.5
,
neg_iou_thr
=
0.4
,
min_pos_iou
=
0
,
ignore_iof_thr
=-
1
),
allowed_border
=-
1
,
pos_weight
=-
1
,
debug
=
False
),
test_cfg
=
dict
(
nms_pre
=
1000
,
min_bbox_size
=
0
,
score_thr
=
0.05
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.6
),
max_per_img
=
100
))
img_norm_cfg
=
dict
(
mean
=
[
103.530
,
116.280
,
123.675
],
std
=
[
1.0
,
1.0
,
1.0
],
to_rgb
=
False
)
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
),
dict
(
type
=
'Resize'
,
img_scale
=
(
1333
,
800
),
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
,
flip_ratio
=
0.5
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'DefaultFormatBundle'
),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_bboxes'
,
'gt_labels'
]),
]
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'MultiScaleFlipAug'
,
img_scale
=
(
1333
,
800
),
flip
=
False
,
transforms
=
[
dict
(
type
=
'Resize'
,
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
]),
])
]
data
=
dict
(
samples_per_gpu
=
4
,
workers_per_gpu
=
2
,
train
=
dict
(
pipeline
=
train_pipeline
),
val
=
dict
(
pipeline
=
test_pipeline
),
test
=
dict
(
pipeline
=
test_pipeline
))
optimizer
=
dict
(
lr
=
0.01
,
paramwise_cfg
=
dict
(
bias_lr_mult
=
2.
,
bias_decay_mult
=
0.
))
openmmlab_test/mmdetection-speed_xinpian/configs/nas_fcos/nas_fcos_nashead_r50_caffe_fpn_gn-head_4x4_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/datasets/coco_detection.py'
,
'../_base_/schedules/schedule_1x.py'
,
'../_base_/default_runtime.py'
]
model
=
dict
(
type
=
'NASFCOS'
,
pretrained
=
'open-mmlab://detectron2/resnet50_caffe'
,
backbone
=
dict
(
type
=
'ResNet'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
False
,
eps
=
0
),
style
=
'caffe'
),
neck
=
dict
(
type
=
'NASFCOS_FPN'
,
in_channels
=
[
256
,
512
,
1024
,
2048
],
out_channels
=
256
,
start_level
=
1
,
add_extra_convs
=
True
,
num_outs
=
5
,
norm_cfg
=
dict
(
type
=
'BN'
),
conv_cfg
=
dict
(
type
=
'DCNv2'
,
deform_groups
=
2
)),
bbox_head
=
dict
(
type
=
'NASFCOSHead'
,
num_classes
=
80
,
in_channels
=
256
,
feat_channels
=
256
,
strides
=
[
8
,
16
,
32
,
64
,
128
],
norm_cfg
=
dict
(
type
=
'GN'
,
num_groups
=
32
),
loss_cls
=
dict
(
type
=
'FocalLoss'
,
use_sigmoid
=
True
,
gamma
=
2.0
,
alpha
=
0.25
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'IoULoss'
,
loss_weight
=
1.0
),
loss_centerness
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
True
,
loss_weight
=
1.0
)),
train_cfg
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.5
,
neg_iou_thr
=
0.4
,
min_pos_iou
=
0
,
ignore_iof_thr
=-
1
),
allowed_border
=-
1
,
pos_weight
=-
1
,
debug
=
False
),
test_cfg
=
dict
(
nms_pre
=
1000
,
min_bbox_size
=
0
,
score_thr
=
0.05
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.6
),
max_per_img
=
100
))
img_norm_cfg
=
dict
(
mean
=
[
103.530
,
116.280
,
123.675
],
std
=
[
1.0
,
1.0
,
1.0
],
to_rgb
=
False
)
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
),
dict
(
type
=
'Resize'
,
img_scale
=
(
1333
,
800
),
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
,
flip_ratio
=
0.5
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'DefaultFormatBundle'
),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_bboxes'
,
'gt_labels'
]),
]
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'MultiScaleFlipAug'
,
img_scale
=
(
1333
,
800
),
flip
=
False
,
transforms
=
[
dict
(
type
=
'Resize'
,
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
]),
])
]
data
=
dict
(
samples_per_gpu
=
4
,
workers_per_gpu
=
2
,
train
=
dict
(
pipeline
=
train_pipeline
),
val
=
dict
(
pipeline
=
test_pipeline
),
test
=
dict
(
pipeline
=
test_pipeline
))
optimizer
=
dict
(
lr
=
0.01
,
paramwise_cfg
=
dict
(
bias_lr_mult
=
2.
,
bias_decay_mult
=
0.
))
openmmlab_test/mmdetection-speed_xinpian/configs/nas_fpn/README.md
0 → 100644
View file @
85529f35
# NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection
## Introduction
<!-- [ALGORITHM] -->
```
latex
@inproceedings
{
ghiasi2019fpn,
title=
{
Nas-fpn: Learning scalable feature pyramid architecture for object detection
}
,
author=
{
Ghiasi, Golnaz and Lin, Tsung-Yi and Le, Quoc V
}
,
booktitle=
{
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
}
,
pages=
{
7036--7045
}
,
year=
{
2019
}
}
```
## Results and Models
We benchmark the new training schedule (crop training, large batch, unfrozen BN, 50 epochs) introduced in NAS-FPN. RetinaNet is used in the paper.
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
|:-----------:|:-------:|:--------:|:--------------:|:------:|:------:|:--------:|
| R-50-FPN | 50e | 12.9 | 22.9 | 37.9 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/nas_fpn/retinanet_r50_fpn_crop640_50e_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/nas_fpn/retinanet_r50_fpn_crop640_50e_coco/retinanet_r50_fpn_crop640_50e_coco-9b953d76.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/nas_fpn/retinanet_r50_fpn_crop640_50e_coco/retinanet_r50_fpn_crop640_50e_coco_20200529_095329.log.json
)
|
| R-50-NASFPN | 50e | 13.2 | 23.0 | 40.5 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/nas_fpn/retinanet_r50_nasfpn_crop640_50e_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/nas_fpn/retinanet_r50_nasfpn_crop640_50e_coco/retinanet_r50_nasfpn_crop640_50e_coco-0ad1f644.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/nas_fpn/retinanet_r50_nasfpn_crop640_50e_coco/retinanet_r50_nasfpn_crop640_50e_coco_20200528_230008.log.json
)
|
**Note**
: We find that it is unstable to train NAS-FPN and there is a small chance that results can be 3% mAP lower.
openmmlab_test/mmdetection-speed_xinpian/configs/nas_fpn/metafile.yml
0 → 100644
View file @
85529f35
Collections
:
-
Name
:
NAS-FPN
Metadata
:
Training Data
:
COCO
Training Techniques
:
-
SGD with Momentum
-
Weight Decay
Training Resources
:
8x NVIDIA V100 GPUs
Architecture
:
-
NAS-FPN
-
ResNet
Paper
:
https://arxiv.org/abs/1904.07392
README
:
configs/nas_fpn/README.md
Models
:
-
Name
:
retinanet_r50_fpn_crop640_50e_coco
In Collection
:
NAS-FPN
Config
:
configs/nas_fpn/retinanet_r50_fpn_crop640_50e_coco.py
Metadata
:
Training Memory (GB)
:
12.9
inference time (s/im)
:
0.04367
Epochs
:
50
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
37.9
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/nas_fpn/retinanet_r50_fpn_crop640_50e_coco/retinanet_r50_fpn_crop640_50e_coco-9b953d76.pth
-
Name
:
retinanet_r50_nasfpn_crop640_50e_coco
In Collection
:
NAS-FPN
Config
:
configs/nas_fpn/retinanet_r50_nasfpn_crop640_50e_coco.py
Metadata
:
Training Memory (GB)
:
13.2
inference time (s/im)
:
0.04348
Epochs
:
50
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
40.5
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/nas_fpn/retinanet_r50_nasfpn_crop640_50e_coco/retinanet_r50_nasfpn_crop640_50e_coco-0ad1f644.pth
openmmlab_test/mmdetection-speed_xinpian/configs/nas_fpn/retinanet_r50_fpn_crop640_50e_coco.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/retinanet_r50_fpn.py'
,
'../_base_/datasets/coco_detection.py'
,
'../_base_/default_runtime.py'
]
cudnn_benchmark
=
True
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
)
model
=
dict
(
pretrained
=
'torchvision://resnet50'
,
backbone
=
dict
(
type
=
'ResNet'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
norm_cfg
,
norm_eval
=
False
,
style
=
'pytorch'
),
neck
=
dict
(
relu_before_extra_convs
=
True
,
no_norm_on_lateral
=
True
,
norm_cfg
=
norm_cfg
),
bbox_head
=
dict
(
type
=
'RetinaSepBNHead'
,
num_ins
=
5
,
norm_cfg
=
norm_cfg
),
# training and testing settings
train_cfg
=
dict
(
assigner
=
dict
(
neg_iou_thr
=
0.5
)))
# dataset settings
img_norm_cfg
=
dict
(
mean
=
[
123.675
,
116.28
,
103.53
],
std
=
[
58.395
,
57.12
,
57.375
],
to_rgb
=
True
)
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
),
dict
(
type
=
'Resize'
,
img_scale
=
(
640
,
640
),
ratio_range
=
(
0.8
,
1.2
),
keep_ratio
=
True
),
dict
(
type
=
'RandomCrop'
,
crop_size
=
(
640
,
640
)),
dict
(
type
=
'RandomFlip'
,
flip_ratio
=
0.5
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size
=
(
640
,
640
)),
dict
(
type
=
'DefaultFormatBundle'
),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_bboxes'
,
'gt_labels'
]),
]
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'MultiScaleFlipAug'
,
img_scale
=
(
640
,
640
),
flip
=
False
,
transforms
=
[
dict
(
type
=
'Resize'
,
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
64
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
]),
])
]
data
=
dict
(
samples_per_gpu
=
8
,
workers_per_gpu
=
4
,
train
=
dict
(
pipeline
=
train_pipeline
),
val
=
dict
(
pipeline
=
test_pipeline
),
test
=
dict
(
pipeline
=
test_pipeline
))
# optimizer
optimizer
=
dict
(
type
=
'SGD'
,
lr
=
0.08
,
momentum
=
0.9
,
weight_decay
=
0.0001
,
paramwise_cfg
=
dict
(
norm_decay_mult
=
0
,
bypass_duplicate
=
True
))
optimizer_config
=
dict
(
grad_clip
=
None
)
# learning policy
lr_config
=
dict
(
policy
=
'step'
,
warmup
=
'linear'
,
warmup_iters
=
1000
,
warmup_ratio
=
0.1
,
step
=
[
30
,
40
])
# runtime settings
runner
=
dict
(
type
=
'EpochBasedRunner'
,
max_epochs
=
50
)
openmmlab_test/mmdetection-speed_xinpian/configs/nas_fpn/retinanet_r50_nasfpn_crop640_50e_coco.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/retinanet_r50_fpn.py'
,
'../_base_/datasets/coco_detection.py'
,
'../_base_/default_runtime.py'
]
cudnn_benchmark
=
True
# model settings
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
)
model
=
dict
(
type
=
'RetinaNet'
,
pretrained
=
'torchvision://resnet50'
,
backbone
=
dict
(
type
=
'ResNet'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
norm_cfg
,
norm_eval
=
False
,
style
=
'pytorch'
),
neck
=
dict
(
type
=
'NASFPN'
,
stack_times
=
7
,
norm_cfg
=
norm_cfg
),
bbox_head
=
dict
(
type
=
'RetinaSepBNHead'
,
num_ins
=
5
,
norm_cfg
=
norm_cfg
),
# training and testing settings
train_cfg
=
dict
(
assigner
=
dict
(
neg_iou_thr
=
0.5
)))
# dataset settings
img_norm_cfg
=
dict
(
mean
=
[
123.675
,
116.28
,
103.53
],
std
=
[
58.395
,
57.12
,
57.375
],
to_rgb
=
True
)
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
),
dict
(
type
=
'Resize'
,
img_scale
=
(
640
,
640
),
ratio_range
=
(
0.8
,
1.2
),
keep_ratio
=
True
),
dict
(
type
=
'RandomCrop'
,
crop_size
=
(
640
,
640
)),
dict
(
type
=
'RandomFlip'
,
flip_ratio
=
0.5
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size
=
(
640
,
640
)),
dict
(
type
=
'DefaultFormatBundle'
),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_bboxes'
,
'gt_labels'
]),
]
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'MultiScaleFlipAug'
,
img_scale
=
(
640
,
640
),
flip
=
False
,
transforms
=
[
dict
(
type
=
'Resize'
,
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
128
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
]),
])
]
data
=
dict
(
samples_per_gpu
=
8
,
workers_per_gpu
=
4
,
train
=
dict
(
pipeline
=
train_pipeline
),
val
=
dict
(
pipeline
=
test_pipeline
),
test
=
dict
(
pipeline
=
test_pipeline
))
# optimizer
optimizer
=
dict
(
type
=
'SGD'
,
lr
=
0.08
,
momentum
=
0.9
,
weight_decay
=
0.0001
,
paramwise_cfg
=
dict
(
norm_decay_mult
=
0
,
bypass_duplicate
=
True
))
optimizer_config
=
dict
(
grad_clip
=
None
)
# learning policy
lr_config
=
dict
(
policy
=
'step'
,
warmup
=
'linear'
,
warmup_iters
=
1000
,
warmup_ratio
=
0.1
,
step
=
[
30
,
40
])
# runtime settings
runner
=
dict
(
type
=
'EpochBasedRunner'
,
max_epochs
=
50
)
openmmlab_test/mmdetection-speed_xinpian/configs/paa/README.md
0 → 100644
View file @
85529f35
# Probabilistic Anchor Assignment with IoU Prediction for Object Detection
<!-- [ALGORITHM] -->
```
latex
@inproceedings
{
paa-eccv2020,
title=
{
Probabilistic Anchor Assignment with IoU Prediction for Object Detection
}
,
author=
{
Kim, Kang and Lee, Hee Seok
}
,
booktitle =
{
ECCV
}
,
year=
{
2020
}
}
```
## Results and Models
We provide config files to reproduce the object detection results in the
ECCV 2020 paper for Probabilistic Anchor Assignment with IoU
Prediction for Object Detection.
| Backbone | Lr schd | Mem (GB) | Score voting | box AP | Config | Download |
|:-----------:|:-------:|:--------:|:------------:|:------:|:------:|:--------:|
| R-50-FPN | 12e | 3.7 | True | 40.4 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/paa/paa_r50_fpn_1x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r50_fpn_1x_coco/paa_r50_fpn_1x_coco_20200821-936edec3.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r50_fpn_1x_coco/paa_r50_fpn_1x_coco_20200821-936edec3.log.json
)
|
| R-50-FPN | 12e | 3.7 | False | 40.2 | - |
| R-50-FPN | 18e | 3.7 | True | 41.4 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/paa/paa_r50_fpn_1.5x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r50_fpn_1.5x_coco/paa_r50_fpn_1.5x_coco_20200823-805d6078.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r50_fpn_1.5x_coco/paa_r50_fpn_1.5x_coco_20200823-805d6078.log.json
)
|
| R-50-FPN | 18e | 3.7 | False | 41.2 | - |
| R-50-FPN | 24e | 3.7 | True | 41.6 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/paa/paa_r50_fpn_2x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r50_fpn_2x_coco/paa_r50_fpn_2x_coco_20200821-c98bfc4e.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r50_fpn_2x_coco/paa_r50_fpn_2x_coco_20200821-c98bfc4e.log.json
)
|
| R-50-FPN | 36e | 3.7 | True | 43.3 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/paa/paa_r50_fpn_mstrain_3x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r50_fpn_mstrain_3x_coco/paa_r50_fpn_mstrain_3x_coco_20210121_145722-06a6880b.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r50_fpn_mstrain_3x_coco/paa_r50_fpn_mstrain_3x_coco_20210121_145722.log.json
)
|
| R-101-FPN | 12e | 6.2 | True | 42.6 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/paa/paa_r101_fpn_1x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r101_fpn_1x_coco/paa_r101_fpn_1x_coco_20200821-0a1825a4.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r101_fpn_1x_coco/paa_r101_fpn_1x_coco_20200821-0a1825a4.log.json
)
|
| R-101-FPN | 12e | 6.2 | False | 42.4 | - |
| R-101-FPN | 24e | 6.2 | True | 43.5 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/paa/paa_r101_fpn_2x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r101_fpn_2x_coco/paa_r101_fpn_2x_coco_20200821-6829f96b.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r101_fpn_2x_coco/paa_r101_fpn_2x_coco_20200821-6829f96b.log.json
)
|
| R-101-FPN | 36e | 6.2 | True | 45.1 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/paa/paa_r101_fpn_mstrain_3x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r101_fpn_mstrain_3x_coco/paa_r101_fpn_mstrain_3x_coco_20210122_084202-83250d22.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r101_fpn_mstrain_3x_coco/paa_r101_fpn_mstrain_3x_coco_20210122_084202.log.json
)
|
**Note**
:
1.
We find that the performance is unstable with 1x setting and may fluctuate by about 0.2 mAP. We report the best results.
openmmlab_test/mmdetection-speed_xinpian/configs/paa/metafile.yml
0 → 100644
View file @
85529f35
Collections
:
-
Name
:
PAA
Metadata
:
Training Data
:
COCO
Training Techniques
:
-
SGD with Momentum
-
Weight Decay
Training Resources
:
8x NVIDIA V100 GPUs
Architecture
:
-
FPN
-
Probabilistic Anchor Assignment
-
ResNet
Paper
:
https://arxiv.org/abs/2007.08103
README
:
configs/paa/README.md
Models
:
-
Name
:
paa_r50_fpn_1x_coco
In Collection
:
PAA
Config
:
configs/paa/paa_r50_fpn_1x_coco.py
Metadata
:
Training Memory (GB)
:
3.7
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
40.4
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r50_fpn_1x_coco/paa_r50_fpn_1x_coco_20200821-936edec3.pth
-
Name
:
paa_r50_fpn_1.5x_coco
In Collection
:
PAA
Config
:
configs/paa/paa_r50_fpn_1.5x_coco.py
Metadata
:
Training Memory (GB)
:
3.7
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
41.4
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r50_fpn_1.5x_coco/paa_r50_fpn_1.5x_coco_20200823-805d6078.pth
-
Name
:
paa_r50_fpn_2x_coco
In Collection
:
PAA
Config
:
configs/paa/paa_r50_fpn_2x_coco.py
Metadata
:
Training Memory (GB)
:
3.7
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
41.6
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r50_fpn_2x_coco/paa_r50_fpn_2x_coco_20200821-c98bfc4e.pth
-
Name
:
paa_r50_fpn_mstrain_3x_coco
In Collection
:
PAA
Config
:
configs/paa/paa_r50_fpn_mstrain_3x_coco.py
Metadata
:
Training Memory (GB)
:
3.7
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
43.3
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r50_fpn_mstrain_3x_coco/paa_r50_fpn_mstrain_3x_coco_20210121_145722-06a6880b.pth
-
Name
:
paa_r101_fpn_1x_coco
In Collection
:
PAA
Config
:
configs/paa/paa_r101_fpn_1x_coco.py
Metadata
:
Training Memory (GB)
:
6.2
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
42.6
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r101_fpn_1x_coco/paa_r101_fpn_1x_coco_20200821-0a1825a4.pth
-
Name
:
paa_r101_fpn_2x_coco
In Collection
:
PAA
Config
:
configs/paa/paa_r101_fpn_2x_coco.py
Metadata
:
Training Memory (GB)
:
6.2
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
43.5
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r101_fpn_2x_coco/paa_r101_fpn_2x_coco_20200821-6829f96b.pth
-
Name
:
paa_r101_fpn_mstrain_3x_coco
In Collection
:
PAA
Config
:
configs/paa/paa_r101_fpn_mstrain_3x_coco.py
Metadata
:
Training Memory (GB)
:
6.2
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
45.1
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/paa/paa_r101_fpn_mstrain_3x_coco/paa_r101_fpn_mstrain_3x_coco_20210122_084202-83250d22.pth
openmmlab_test/mmdetection-speed_xinpian/configs/paa/paa_r101_fpn_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./paa_r50_fpn_1x_coco.py'
model
=
dict
(
pretrained
=
'torchvision://resnet101'
,
backbone
=
dict
(
depth
=
101
))
openmmlab_test/mmdetection-speed_xinpian/configs/paa/paa_r101_fpn_2x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./paa_r101_fpn_1x_coco.py'
lr_config
=
dict
(
step
=
[
16
,
22
])
runner
=
dict
(
type
=
'EpochBasedRunner'
,
max_epochs
=
24
)
openmmlab_test/mmdetection-speed_xinpian/configs/paa/paa_r101_fpn_mstrain_3x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./paa_r50_fpn_mstrain_3x_coco.py'
model
=
dict
(
pretrained
=
'torchvision://resnet101'
,
backbone
=
dict
(
depth
=
101
))
openmmlab_test/mmdetection-speed_xinpian/configs/paa/paa_r50_fpn_1.5x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./paa_r50_fpn_1x_coco.py'
lr_config
=
dict
(
step
=
[
12
,
16
])
runner
=
dict
(
type
=
'EpochBasedRunner'
,
max_epochs
=
18
)
openmmlab_test/mmdetection-speed_xinpian/configs/paa/paa_r50_fpn_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/datasets/coco_detection.py'
,
'../_base_/schedules/schedule_1x.py'
,
'../_base_/default_runtime.py'
]
model
=
dict
(
type
=
'PAA'
,
pretrained
=
'torchvision://resnet50'
,
backbone
=
dict
(
type
=
'ResNet'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
),
norm_eval
=
True
,
style
=
'pytorch'
),
neck
=
dict
(
type
=
'FPN'
,
in_channels
=
[
256
,
512
,
1024
,
2048
],
out_channels
=
256
,
start_level
=
1
,
add_extra_convs
=
'on_output'
,
num_outs
=
5
),
bbox_head
=
dict
(
type
=
'PAAHead'
,
reg_decoded_bbox
=
True
,
score_voting
=
True
,
topk
=
9
,
num_classes
=
80
,
in_channels
=
256
,
stacked_convs
=
4
,
feat_channels
=
256
,
anchor_generator
=
dict
(
type
=
'AnchorGenerator'
,
ratios
=
[
1.0
],
octave_base_scale
=
8
,
scales_per_octave
=
1
,
strides
=
[
8
,
16
,
32
,
64
,
128
]),
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[.
0
,
.
0
,
.
0
,
.
0
],
target_stds
=
[
0.1
,
0.1
,
0.2
,
0.2
]),
loss_cls
=
dict
(
type
=
'FocalLoss'
,
use_sigmoid
=
True
,
gamma
=
2.0
,
alpha
=
0.25
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'GIoULoss'
,
loss_weight
=
1.3
),
loss_centerness
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
True
,
loss_weight
=
0.5
)),
# training and testing settings
train_cfg
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.1
,
neg_iou_thr
=
0.1
,
min_pos_iou
=
0
,
ignore_iof_thr
=-
1
),
allowed_border
=-
1
,
pos_weight
=-
1
,
debug
=
False
),
test_cfg
=
dict
(
nms_pre
=
1000
,
min_bbox_size
=
0
,
score_thr
=
0.05
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.6
),
max_per_img
=
100
))
# optimizer
optimizer
=
dict
(
type
=
'SGD'
,
lr
=
0.01
,
momentum
=
0.9
,
weight_decay
=
0.0001
)
Prev
1
…
40
41
42
43
44
45
46
47
48
49
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment