Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
dcuai
dlexamples
Commits
85529f35
Commit
85529f35
authored
Jul 30, 2022
by
unknown
Browse files
添加openmmlab测试用例
parent
b21b0c01
Changes
977
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
930 additions
and
0 deletions
+930
-0
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_poly_1x_coco_v1.py
...figs/mask_rcnn/mask_rcnn_r50_caffe_fpn_poly_1x_coco_v1.py
+57
-0
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py
...ed_xinpian/configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py
+5
-0
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_r50_fpn_2x_coco.py
...ed_xinpian/configs/mask_rcnn/mask_rcnn_r50_fpn_2x_coco.py
+5
-0
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_r50_fpn_mstrain-poly_3x_coco.py
...nfigs/mask_rcnn/mask_rcnn_r50_fpn_mstrain-poly_3x_coco.py
+4
-0
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_r50_fpn_poly_1x_coco.py
...npian/configs/mask_rcnn/mask_rcnn_r50_fpn_poly_1x_coco.py
+23
-0
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco.py
...ian/configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco.py
+13
-0
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_2x_coco.py
...ian/configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_2x_coco.py
+13
-0
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_mstrain-poly_3x_coco.py
...ask_rcnn/mask_rcnn_x101_32x4d_fpn_mstrain-poly_3x_coco.py
+17
-0
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_x101_32x8d_fpn_1x_coco.py
...ian/configs/mask_rcnn/mask_rcnn_x101_32x8d_fpn_1x_coco.py
+63
-0
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_x101_32x8d_fpn_mstrain-poly_1x_coco.py
...ask_rcnn/mask_rcnn_x101_32x8d_fpn_mstrain-poly_1x_coco.py
+58
-0
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco.py
...ask_rcnn/mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco.py
+83
-0
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_x101_64x4d_fpn_1x_coco.py
...ian/configs/mask_rcnn/mask_rcnn_x101_64x4d_fpn_1x_coco.py
+13
-0
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_x101_64x4d_fpn_2x_coco.py
...ian/configs/mask_rcnn/mask_rcnn_x101_64x4d_fpn_2x_coco.py
+13
-0
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_x101_64x4d_fpn_mstrain-poly_3x_coco.py
...ask_rcnn/mask_rcnn_x101_64x4d_fpn_mstrain-poly_3x_coco.py
+17
-0
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/metafile.yml
.../mmdetection-speed_xinpian/configs/mask_rcnn/metafile.yml
+360
-0
openmmlab_test/mmdetection-speed_xinpian/configs/ms_rcnn/README.md
..._test/mmdetection-speed_xinpian/configs/ms_rcnn/README.md
+26
-0
openmmlab_test/mmdetection-speed_xinpian/configs/ms_rcnn/metafile.yml
...st/mmdetection-speed_xinpian/configs/ms_rcnn/metafile.yml
+136
-0
openmmlab_test/mmdetection-speed_xinpian/configs/ms_rcnn/ms_rcnn_r101_caffe_fpn_1x_coco.py
...xinpian/configs/ms_rcnn/ms_rcnn_r101_caffe_fpn_1x_coco.py
+4
-0
openmmlab_test/mmdetection-speed_xinpian/configs/ms_rcnn/ms_rcnn_r101_caffe_fpn_2x_coco.py
...xinpian/configs/ms_rcnn/ms_rcnn_r101_caffe_fpn_2x_coco.py
+4
-0
openmmlab_test/mmdetection-speed_xinpian/configs/ms_rcnn/ms_rcnn_r50_caffe_fpn_1x_coco.py
..._xinpian/configs/ms_rcnn/ms_rcnn_r50_caffe_fpn_1x_coco.py
+16
-0
No files found.
Too many changes to show.
To preserve performance only
977 of 977+
files are displayed.
Plain diff
Email patch
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_poly_1x_coco_v1.py
0 → 100644
View file @
85529f35
_base_
=
'./mask_rcnn_r50_fpn_1x_coco.py'
model
=
dict
(
pretrained
=
'open-mmlab://resnet50_caffe_bgr'
,
backbone
=
dict
(
norm_cfg
=
dict
(
requires_grad
=
False
),
style
=
'caffe'
),
rpn_head
=
dict
(
loss_bbox
=
dict
(
type
=
'SmoothL1Loss'
,
beta
=
1.0
/
9.0
,
loss_weight
=
1.0
)),
roi_head
=
dict
(
bbox_roi_extractor
=
dict
(
roi_layer
=
dict
(
type
=
'RoIAlign'
,
output_size
=
7
,
sampling_ratio
=
2
,
aligned
=
False
)),
bbox_head
=
dict
(
loss_bbox
=
dict
(
type
=
'SmoothL1Loss'
,
beta
=
1.0
,
loss_weight
=
1.0
)),
mask_roi_extractor
=
dict
(
roi_layer
=
dict
(
type
=
'RoIAlign'
,
output_size
=
14
,
sampling_ratio
=
2
,
aligned
=
False
))))
# use caffe img_norm
img_norm_cfg
=
dict
(
mean
=
[
103.530
,
116.280
,
123.675
],
std
=
[
1.0
,
1.0
,
1.0
],
to_rgb
=
False
)
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
,
with_mask
=
True
,
poly2mask
=
False
),
dict
(
type
=
'Resize'
,
img_scale
=
(
1333
,
800
),
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
,
flip_ratio
=
0.5
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'DefaultFormatBundle'
),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_bboxes'
,
'gt_labels'
,
'gt_masks'
]),
]
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'MultiScaleFlipAug'
,
img_scale
=
(
1333
,
800
),
flip
=
False
,
transforms
=
[
dict
(
type
=
'Resize'
,
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
]),
])
]
data
=
dict
(
train
=
dict
(
pipeline
=
train_pipeline
),
val
=
dict
(
pipeline
=
test_pipeline
),
test
=
dict
(
pipeline
=
test_pipeline
))
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/mask_rcnn_r50_fpn.py'
,
'../_base_/datasets/coco_instance.py'
,
'../_base_/schedules/schedule_1x.py'
,
'../_base_/default_runtime.py'
]
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_r50_fpn_2x_coco.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/mask_rcnn_r50_fpn.py'
,
'../_base_/datasets/coco_instance.py'
,
'../_base_/schedules/schedule_2x.py'
,
'../_base_/default_runtime.py'
]
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_r50_fpn_mstrain-poly_3x_coco.py
0 → 100644
View file @
85529f35
_base_
=
[
'../common/mstrain-poly_3x_coco_instance.py'
,
'../_base_/models/mask_rcnn_r50_fpn.py'
]
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_r50_fpn_poly_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/mask_rcnn_r50_fpn.py'
,
'../_base_/datasets/coco_instance.py'
,
'../_base_/schedules/schedule_1x.py'
,
'../_base_/default_runtime.py'
]
img_norm_cfg
=
dict
(
mean
=
[
123.675
,
116.28
,
103.53
],
std
=
[
58.395
,
57.12
,
57.375
],
to_rgb
=
True
)
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
,
with_mask
=
True
,
poly2mask
=
False
),
dict
(
type
=
'Resize'
,
img_scale
=
(
1333
,
800
),
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
,
flip_ratio
=
0.5
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'DefaultFormatBundle'
),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_bboxes'
,
'gt_labels'
,
'gt_masks'
]),
]
data
=
dict
(
train
=
dict
(
pipeline
=
train_pipeline
))
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./mask_rcnn_r101_fpn_1x_coco.py'
model
=
dict
(
pretrained
=
'open-mmlab://resnext101_32x4d'
,
backbone
=
dict
(
type
=
'ResNeXt'
,
depth
=
101
,
groups
=
32
,
base_width
=
4
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
),
style
=
'pytorch'
))
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_2x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./mask_rcnn_r101_fpn_2x_coco.py'
model
=
dict
(
pretrained
=
'open-mmlab://resnext101_32x4d'
,
backbone
=
dict
(
type
=
'ResNeXt'
,
depth
=
101
,
groups
=
32
,
base_width
=
4
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
),
style
=
'pytorch'
))
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_mstrain-poly_3x_coco.py
0 → 100644
View file @
85529f35
_base_
=
[
'../common/mstrain-poly_3x_coco_instance.py'
,
'../_base_/models/mask_rcnn_r50_fpn.py'
]
model
=
dict
(
pretrained
=
'open-mmlab://resnext101_32x4d'
,
backbone
=
dict
(
type
=
'ResNeXt'
,
depth
=
101
,
groups
=
32
,
base_width
=
4
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
),
style
=
'pytorch'
))
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_x101_32x8d_fpn_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./mask_rcnn_r101_fpn_1x_coco.py'
model
=
dict
(
pretrained
=
'open-mmlab://detectron2/resnext101_32x8d'
,
backbone
=
dict
(
type
=
'ResNeXt'
,
depth
=
101
,
groups
=
32
,
base_width
=
8
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
False
),
style
=
'pytorch'
))
dataset_type
=
'CocoDataset'
data_root
=
'data/coco/'
img_norm_cfg
=
dict
(
mean
=
[
103.530
,
116.280
,
123.675
],
std
=
[
57.375
,
57.120
,
58.395
],
to_rgb
=
False
)
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
,
with_mask
=
True
),
dict
(
type
=
'Resize'
,
img_scale
=
(
1333
,
800
),
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
,
flip_ratio
=
0.5
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'DefaultFormatBundle'
),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_bboxes'
,
'gt_labels'
,
'gt_masks'
]),
]
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'MultiScaleFlipAug'
,
img_scale
=
(
1333
,
800
),
flip
=
False
,
transforms
=
[
dict
(
type
=
'Resize'
,
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
]),
])
]
data
=
dict
(
samples_per_gpu
=
2
,
workers_per_gpu
=
2
,
train
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_train2017.json'
,
img_prefix
=
data_root
+
'train2017/'
,
pipeline
=
train_pipeline
),
val
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_val2017.json'
,
img_prefix
=
data_root
+
'val2017/'
,
pipeline
=
test_pipeline
),
test
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_val2017.json'
,
img_prefix
=
data_root
+
'val2017/'
,
pipeline
=
test_pipeline
))
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_x101_32x8d_fpn_mstrain-poly_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./mask_rcnn_r101_fpn_1x_coco.py'
model
=
dict
(
pretrained
=
'open-mmlab://detectron2/resnext101_32x8d'
,
backbone
=
dict
(
type
=
'ResNeXt'
,
depth
=
101
,
groups
=
32
,
base_width
=
8
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
False
),
style
=
'pytorch'
))
dataset_type
=
'CocoDataset'
data_root
=
'data/coco/'
img_norm_cfg
=
dict
(
mean
=
[
103.530
,
116.280
,
123.675
],
std
=
[
57.375
,
57.120
,
58.395
],
to_rgb
=
False
)
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
,
with_mask
=
True
,
poly2mask
=
False
),
dict
(
type
=
'Resize'
,
img_scale
=
[(
1333
,
640
),
(
1333
,
672
),
(
1333
,
704
),
(
1333
,
736
),
(
1333
,
768
),
(
1333
,
800
)],
multiscale_mode
=
'value'
,
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
,
flip_ratio
=
0.5
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'DefaultFormatBundle'
),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_bboxes'
,
'gt_labels'
,
'gt_masks'
]),
]
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'MultiScaleFlipAug'
,
img_scale
=
(
1333
,
800
),
flip
=
False
,
transforms
=
[
dict
(
type
=
'Resize'
,
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
]),
])
]
data
=
dict
(
train
=
dict
(
pipeline
=
train_pipeline
),
val
=
dict
(
pipeline
=
test_pipeline
),
test
=
dict
(
pipeline
=
test_pipeline
))
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco.py
0 → 100644
View file @
85529f35
_base_
=
[
'../common/mstrain-poly_3x_coco_instance.py'
,
'../_base_/models/mask_rcnn_r50_fpn.py'
]
model
=
dict
(
pretrained
=
'open-mmlab://detectron2/resnext101_32x8d'
,
backbone
=
dict
(
type
=
'ResNeXt'
,
depth
=
101
,
groups
=
32
,
base_width
=
8
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
False
),
style
=
'pytorch'
))
dataset_type
=
'CocoDataset'
data_root
=
'data/coco/'
img_norm_cfg
=
dict
(
mean
=
[
103.530
,
116.280
,
123.675
],
std
=
[
57.375
,
57.120
,
58.395
],
to_rgb
=
False
)
# In mstrain 3x config, img_scale=[(1333, 640), (1333, 800)],
# multiscale_mode='range'
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
,
with_mask
=
True
,
poly2mask
=
False
),
dict
(
type
=
'Resize'
,
img_scale
=
[(
1333
,
640
),
(
1333
,
800
)],
multiscale_mode
=
'range'
,
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
,
flip_ratio
=
0.5
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'DefaultFormatBundle'
),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_bboxes'
,
'gt_labels'
,
'gt_masks'
]),
]
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'MultiScaleFlipAug'
,
img_scale
=
(
1333
,
800
),
flip
=
False
,
transforms
=
[
dict
(
type
=
'Resize'
,
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
]),
])
]
# Use RepeatDataset to speed up training
data
=
dict
(
samples_per_gpu
=
2
,
workers_per_gpu
=
2
,
train
=
dict
(
type
=
'RepeatDataset'
,
times
=
3
,
dataset
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_train2017.json'
,
img_prefix
=
data_root
+
'train2017/'
,
pipeline
=
train_pipeline
)),
val
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_val2017.json'
,
img_prefix
=
data_root
+
'val2017/'
,
pipeline
=
test_pipeline
),
test
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/instances_val2017.json'
,
img_prefix
=
data_root
+
'val2017/'
,
pipeline
=
test_pipeline
))
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_x101_64x4d_fpn_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./mask_rcnn_x101_32x4d_fpn_1x_coco.py'
model
=
dict
(
pretrained
=
'open-mmlab://resnext101_64x4d'
,
backbone
=
dict
(
type
=
'ResNeXt'
,
depth
=
101
,
groups
=
64
,
base_width
=
4
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
),
style
=
'pytorch'
))
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_x101_64x4d_fpn_2x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./mask_rcnn_x101_32x4d_fpn_2x_coco.py'
model
=
dict
(
pretrained
=
'open-mmlab://resnext101_64x4d'
,
backbone
=
dict
(
type
=
'ResNeXt'
,
depth
=
101
,
groups
=
64
,
base_width
=
4
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
),
style
=
'pytorch'
))
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_x101_64x4d_fpn_mstrain-poly_3x_coco.py
0 → 100644
View file @
85529f35
_base_
=
[
'../common/mstrain-poly_3x_coco_instance.py'
,
'../_base_/models/mask_rcnn_r50_fpn.py'
]
model
=
dict
(
pretrained
=
'open-mmlab://resnext101_64x4d'
,
backbone
=
dict
(
type
=
'ResNeXt'
,
depth
=
101
,
groups
=
64
,
base_width
=
4
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
),
style
=
'pytorch'
))
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/metafile.yml
0 → 100644
View file @
85529f35
Collections
:
-
Name
:
Mask R-CNN
Metadata
:
Training Data
:
COCO
Training Techniques
:
-
SGD with Momentum
-
Weight Decay
Training Resources
:
8x NVIDIA V100 GPUs
Architecture
:
-
Softmax
-
RPN
-
Convolution
-
Dense Connections
-
FPN
-
ResNet
-
RoIAlign
Paper
:
https://arxiv.org/abs/1703.06870v3
README
:
configs/mask_rcnn/README.md
Models
:
-
Name
:
mask_rcnn_r50_caffe_fpn_1x_coco
In Collection
:
Mask R-CNN
Config
:
configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_1x_coco.py
Metadata
:
Training Memory (GB)
:
4.3
Epochs
:
12
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
38.0
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
34.4
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_caffe_fpn_1x_coco/mask_rcnn_r50_caffe_fpn_1x_coco_bbox_mAP-0.38__segm_mAP-0.344_20200504_231812-0ebd1859.pth
-
Name
:
mask_rcnn_r50_fpn_1x_coco
In Collection
:
Mask R-CNN
Config
:
configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py
Metadata
:
Training Memory (GB)
:
4.4
inference time (s/im)
:
0.06211
Epochs
:
12
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
38.2
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
34.7
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_1x_coco/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth
-
Name
:
mask_rcnn_r50_fpn_2x_coco
In Collection
:
Mask R-CNN
Config
:
configs/mask_rcnn/mask_rcnn_r50_fpn_2x_coco.py
Metadata
:
Training Memory (GB)
:
4.4
inference time (s/im)
:
0.06211
Epochs
:
24
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
39.2
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
35.4
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_2x_coco/mask_rcnn_r50_fpn_2x_coco_bbox_mAP-0.392__segm_mAP-0.354_20200505_003907-3e542a40.pth
-
Name
:
mask_rcnn_r101_caffe_fpn_1x_coco
In Collection
:
Mask R-CNN
Config
:
configs/mask_rcnn/mask_rcnn_r101_caffe_fpn_1x_coco.py
Metadata
:
Epochs
:
12
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
40.4
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
36.4
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_caffe_fpn_1x_coco/mask_rcnn_r101_caffe_fpn_1x_coco_20200601_095758-805e06c1.pth
-
Name
:
mask_rcnn_r101_fpn_1x_coco
In Collection
:
Mask R-CNN
Config
:
configs/mask_rcnn/mask_rcnn_r101_fpn_1x_coco.py
Metadata
:
Training Memory (GB)
:
6.4
inference time (s/im)
:
0.07407
Epochs
:
12
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
40.0
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
36.1
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_fpn_1x_coco/mask_rcnn_r101_fpn_1x_coco_20200204-1efe0ed5.pth
-
Name
:
mask_rcnn_r101_fpn_2x_coco
In Collection
:
Mask R-CNN
Config
:
configs/mask_rcnn/mask_rcnn_r101_fpn_2x_coco.py
Metadata
:
Training Memory (GB)
:
6.4
inference time (s/im)
:
0.07407
Epochs
:
24
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
40.8
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
36.6
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_fpn_2x_coco/mask_rcnn_r101_fpn_2x_coco_bbox_mAP-0.408__segm_mAP-0.366_20200505_071027-14b391c7.pth
-
Name
:
mask_rcnn_x101_32x4d_fpn_1x_coco
In Collection
:
Mask R-CNN
Config
:
configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco.py
Metadata
:
Training Memory (GB)
:
7.6
inference time (s/im)
:
0.0885
Epochs
:
12
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
41.9
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
37.5
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco/mask_rcnn_x101_32x4d_fpn_1x_coco_20200205-478d0b67.pth
-
Name
:
mask_rcnn_x101_32x4d_fpn_2x_coco
In Collection
:
Mask R-CNN
Config
:
configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_2x_coco.py
Metadata
:
Training Memory (GB)
:
7.6
inference time (s/im)
:
0.0885
Epochs
:
24
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
42.2
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
37.8
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_32x4d_fpn_2x_coco/mask_rcnn_x101_32x4d_fpn_2x_coco_bbox_mAP-0.422__segm_mAP-0.378_20200506_004702-faef898c.pth
-
Name
:
mask_rcnn_x101_64x4d_fpn_1x_coco
In Collection
:
Mask R-CNN
Config
:
configs/mask_rcnn/mask_rcnn_x101_64x4d_fpn_1x_coco.py
Metadata
:
Training Memory (GB)
:
10.7
inference time (s/im)
:
0.125
Epochs
:
12
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
42.8
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
38.4
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_64x4d_fpn_1x_coco/mask_rcnn_x101_64x4d_fpn_1x_coco_20200201-9352eb0d.pth
-
Name
:
mask_rcnn_x101_64x4d_fpn_2x_coco
In Collection
:
Mask R-CNN
Config
:
configs/mask_rcnn/mask_rcnn_x101_64x4d_fpn_2x_coco.py
Metadata
:
Training Memory (GB)
:
10.7
inference time (s/im)
:
0.125
Epochs
:
24
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
42.7
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
38.1
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_64x4d_fpn_2x_coco/mask_rcnn_x101_64x4d_fpn_2x_coco_20200509_224208-39d6f70c.pth
-
Name
:
mask_rcnn_x101_32x8d_fpn_1x_coco
In Collection
:
Mask R-CNN
Config
:
configs/mask_rcnn/mask_rcnn_x101_32x8d_fpn_1x_coco.py
Metadata
:
Training Memory (GB)
:
10.7
inference time (s/im)
:
0.125
Epochs
:
12
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
42.8
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
38.3
-
Name
:
mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco
In Collection
:
Mask R-CNN
Config
:
configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco.py
Metadata
:
Training Memory (GB)
:
4.3
Epochs
:
24
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
40.3
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
36.5
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco/mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco_bbox_mAP-0.403__segm_mAP-0.365_20200504_231822-a75c98ce.pth
-
Name
:
mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco
In Collection
:
Mask R-CNN
Config
:
configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco.py
Metadata
:
Training Memory (GB)
:
4.3
Epochs
:
36
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
40.8
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
37.0
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_bbox_mAP-0.408__segm_mAP-0.37_20200504_163245-42aa3d00.pth
-
Name
:
mask_rcnn_r50_fpn_mstrain-poly_3x_coco
In Collection
:
Mask R-CNN
Config
:
configs/mask_rcnn/mask_rcnn_r50_fpn_mstrain-poly_3x_coco.py
Metadata
:
Training Memory (GB)
:
4.1
Epochs
:
36
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
40.9
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
37.1
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_mstrain-poly_3x_coco/mask_rcnn_r50_fpn_mstrain-poly_3x_coco_20210524_201154-21b550bb.pth
-
Name
:
mask_rcnn_r101_fpn_mstrain-poly_3x_coco
In Collection
:
Mask R-CNN
Config
:
configs/mask_rcnn/mask_rcnn_r101_fpn_mstrain-poly_3x_coco.py
Metadata
:
Training Memory (GB)
:
6.1
Epochs
:
36
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
42.7
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
38.5
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_fpn_mstrain-poly_3x_coco/mask_rcnn_r101_fpn_mstrain-poly_3x_coco_20210524_200244-5675c317.pth
-
Name
:
mask_rcnn_r101_caffe_fpn_mstrain-poly_3x_coco
In Collection
:
Mask R-CNN
Config
:
configs/mask_rcnn/mask_rcnn_r101_caffe_fpn_mstrain-poly_3x_coco.py
Metadata
:
Training Memory (GB)
:
5.9
Epochs
:
36
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
42.9
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
38.5
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_caffe_fpn_mstrain-poly_3x_coco/mask_rcnn_r101_caffe_fpn_mstrain-poly_3x_coco_20210526_132339-3c33ce02.pth
-
Name
:
mask_rcnn_x101_32x4d_fpn_mstrain-poly_3x_coco
In Collection
:
Mask R-CNN
Config
:
configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_mstrain-poly_3x_coco.py
Metadata
:
Training Memory (GB)
:
7.3
Epochs
:
36
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
43.6
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
39.0
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_32x4d_fpn_mstrain-poly_3x_coco/mask_rcnn_x101_32x4d_fpn_mstrain-poly_3x_coco_20210524_201410-abcd7859.pth
-
Name
:
mask_rcnn_x101_32x8d_fpn_mstrain-poly_1x_coco
In Collection
:
Mask R-CNN
Config
:
configs/mask_rcnn/mask_rcnn_x101_32x8d_fpn_mstrain-poly_1x_coco.py
Metadata
:
Epochs
:
12
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
43.6
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
39.0
-
Name
:
mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco
In Collection
:
Mask R-CNN
Config
:
configs/mask_rcnn/mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco
Metadata
:
Training Memory (GB)
:
10.3
Epochs
:
36
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
44.3
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco/mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco_20210607_161042-8bd2c639.pth
-
Name
:
mask_rcnn_x101_64x4d_fpn_mstrain-poly_3x_coco
In Collection
:
Mask R-CNN
Config
:
configs/mask_rcnn/mask_rcnn_x101_64x4d_fpn_mstrain-poly_3x_coco.py
Metadata
:
Epochs
:
36
Training Memory (GB)
:
10.4
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
44.5
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
39.7
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_64x4d_fpn_mstrain-poly_3x_coco/mask_rcnn_x101_64x4d_fpn_mstrain-poly_3x_coco_20210526_120447-c376f129.pth
openmmlab_test/mmdetection-speed_xinpian/configs/ms_rcnn/README.md
0 → 100644
View file @
85529f35
# Mask Scoring R-CNN
## Introduction
<!-- [ALGORITHM] -->
```
@inproceedings{huang2019msrcnn,
title={Mask Scoring R-CNN},
author={Zhaojin Huang and Lichao Huang and Yongchao Gong and Chang Huang and Xinggang Wang},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
year={2019},
}
```
## Results and Models
| Backbone | style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
|:-------------:|:----------:|:-------:|:--------:|:--------------:|:------:|:-------:|:------:|:--------:|
| R-50-FPN | caffe | 1x | 4.5 | | 38.2 | 36.0 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/ms_rcnn/ms_rcnn_r50_caffe_fpn_1x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_r50_caffe_fpn_1x_coco/ms_rcnn_r50_caffe_fpn_1x_coco_20200702_180848-61c9355e.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_r50_caffe_fpn_1x_coco/ms_rcnn_r50_caffe_fpn_1x_coco_20200702_180848.log.json
)
|
| R-50-FPN | caffe | 2x | - | - | 38.8 | 36.3 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/ms_rcnn/ms_rcnn_r50_caffe_fpn_2x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_r50_caffe_fpn_2x_coco/ms_rcnn_r50_caffe_fpn_2x_coco_bbox_mAP-0.388__segm_mAP-0.363_20200506_004738-ee87b137.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_r50_caffe_fpn_2x_coco/ms_rcnn_r50_caffe_fpn_2x_coco_20200506_004738.log.json
)
|
| R-101-FPN | caffe | 1x | 6.5 | | 40.4 | 37.6 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/ms_rcnn/ms_rcnn_r101_caffe_fpn_1x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_r101_caffe_fpn_1x_coco/ms_rcnn_r101_caffe_fpn_1x_coco_bbox_mAP-0.404__segm_mAP-0.376_20200506_004755-b9b12a37.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_r101_caffe_fpn_1x_coco/ms_rcnn_r101_caffe_fpn_1x_coco_20200506_004755.log.json
)
|
| R-101-FPN | caffe | 2x | - | - | 41.1 | 38.1 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/ms_rcnn/ms_rcnn_r101_caffe_fpn_2x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_r101_caffe_fpn_2x_coco/ms_rcnn_r101_caffe_fpn_2x_coco_bbox_mAP-0.411__segm_mAP-0.381_20200506_011134-5f3cc74f.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_r101_caffe_fpn_2x_coco/ms_rcnn_r101_caffe_fpn_2x_coco_20200506_011134.log.json
)
|
| R-X101-32x4d | pytorch | 2x | 7.9 | 11.0 | 41.8 | 38.7 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/ms_rcnn/ms_rcnn_x101_32x4d_fpn_1x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_x101_32x4d_fpn_1x_coco/ms_rcnn_x101_32x4d_fpn_1x_coco_20200206-81fd1740.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_x101_32x4d_fpn_1x_coco/ms_rcnn_x101_32x4d_fpn_1x_coco_20200206_100113.log.json
)
|
| R-X101-64x4d | pytorch | 1x | 11.0 | 8.0 | 43.0 | 39.5 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/ms_rcnn/ms_rcnn_x101_64x4d_fpn_1x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_x101_64x4d_fpn_1x_coco/ms_rcnn_x101_64x4d_fpn_1x_coco_20200206-86ba88d2.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_x101_64x4d_fpn_1x_coco/ms_rcnn_x101_64x4d_fpn_1x_coco_20200206_091744.log.json
)
|
| R-X101-64x4d | pytorch | 2x | 11.0 | 8.0 | 42.6 | 39.5 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/ms_rcnn/ms_rcnn_x101_64x4d_fpn_2x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_x101_64x4d_fpn_2x_coco/ms_rcnn_x101_64x4d_fpn_2x_coco_20200308-02a445e2.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_x101_64x4d_fpn_2x_coco/ms_rcnn_x101_64x4d_fpn_2x_coco_20200308_012247.log.json
)
|
openmmlab_test/mmdetection-speed_xinpian/configs/ms_rcnn/metafile.yml
0 → 100644
View file @
85529f35
Collections
:
-
Name
:
Mask Scoring R-CNN
Metadata
:
Training Data
:
COCO
Training Techniques
:
-
SGD with Momentum
-
Weight Decay
Training Resources
:
8x NVIDIA V100 GPUs
Architecture
:
-
RPN
-
FPN
-
ResNet
-
RoIAlign
Paper
:
https://arxiv.org/abs/1903.00241
README
:
configs/ms_rcnn/README.md
Models
:
-
Name
:
ms_rcnn_r50_caffe_fpn_1x_coco
In Collection
:
Mask Scoring R-CNN
Config
:
configs/ms_rcnn/ms_rcnn_r50_caffe_fpn_1x_coco.py
Metadata
:
Training Memory (GB)
:
4.5
Epochs
:
12
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
38.2
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
36.0
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_r50_caffe_fpn_1x_coco/ms_rcnn_r50_caffe_fpn_1x_coco_20200702_180848-61c9355e.pth
-
Name
:
ms_rcnn_r50_caffe_fpn_2x_coco
In Collection
:
Mask Scoring R-CNN
Config
:
configs/ms_rcnn/ms_rcnn_r50_caffe_fpn_2x_coco.py
Metadata
:
Epochs
:
24
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
38.8
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
36.3
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_r50_caffe_fpn_2x_coco/ms_rcnn_r50_caffe_fpn_2x_coco_bbox_mAP-0.388__segm_mAP-0.363_20200506_004738-ee87b137.pth
-
Name
:
ms_rcnn_r101_caffe_fpn_1x_coco
In Collection
:
Mask Scoring R-CNN
Config
:
configs/ms_rcnn/ms_rcnn_r101_caffe_fpn_1x_coco.py
Metadata
:
Training Memory (GB)
:
6.5
Epochs
:
12
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
40.4
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
37.6
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_r101_caffe_fpn_1x_coco/ms_rcnn_r101_caffe_fpn_1x_coco_bbox_mAP-0.404__segm_mAP-0.376_20200506_004755-b9b12a37.pth
-
Name
:
ms_rcnn_r101_caffe_fpn_2x_coco
In Collection
:
Mask Scoring R-CNN
Config
:
configs/ms_rcnn/ms_rcnn_r101_caffe_fpn_2x_coco.py
Metadata
:
Epochs
:
24
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
41.1
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
38.1
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_r101_caffe_fpn_2x_coco/ms_rcnn_r101_caffe_fpn_2x_coco_bbox_mAP-0.411__segm_mAP-0.381_20200506_011134-5f3cc74f.pth
-
Name
:
ms_rcnn_x101_32x4d_fpn_1x_coco
In Collection
:
Mask Scoring R-CNN
Config
:
configs/ms_rcnn/ms_rcnn_x101_32x4d_fpn_1x_coco.py
Metadata
:
Training Memory (GB)
:
7.9
inference time (s/im)
:
0.09091
Epochs
:
12
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
41.8
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
38.7
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_x101_32x4d_fpn_1x_coco/ms_rcnn_x101_32x4d_fpn_1x_coco_20200206-81fd1740.pth
-
Name
:
ms_rcnn_x101_64x4d_fpn_1x_coco
In Collection
:
Mask Scoring R-CNN
Config
:
configs/ms_rcnn/ms_rcnn_x101_64x4d_fpn_1x_coco.py
Metadata
:
Training Memory (GB)
:
11.0
inference time (s/im)
:
0.125
Epochs
:
12
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
43.0
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
39.5
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_x101_64x4d_fpn_1x_coco/ms_rcnn_x101_64x4d_fpn_1x_coco_20200206-86ba88d2.pth
-
Name
:
ms_rcnn_x101_64x4d_fpn_2x_coco
In Collection
:
Mask Scoring R-CNN
Config
:
configs/ms_rcnn/ms_rcnn_x101_64x4d_fpn_2x_coco.py
Metadata
:
Training Memory (GB)
:
11.0
inference time (s/im)
:
0.125
Epochs
:
24
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
42.6
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
39.5
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/ms_rcnn/ms_rcnn_x101_64x4d_fpn_2x_coco/ms_rcnn_x101_64x4d_fpn_2x_coco_20200308-02a445e2.pth
openmmlab_test/mmdetection-speed_xinpian/configs/ms_rcnn/ms_rcnn_r101_caffe_fpn_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./ms_rcnn_r50_caffe_fpn_1x_coco.py'
model
=
dict
(
pretrained
=
'open-mmlab://detectron2/resnet101_caffe'
,
backbone
=
dict
(
depth
=
101
))
openmmlab_test/mmdetection-speed_xinpian/configs/ms_rcnn/ms_rcnn_r101_caffe_fpn_2x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./ms_rcnn_r101_caffe_fpn_1x_coco.py'
# learning policy
lr_config
=
dict
(
step
=
[
16
,
22
])
runner
=
dict
(
type
=
'EpochBasedRunner'
,
max_epochs
=
24
)
openmmlab_test/mmdetection-speed_xinpian/configs/ms_rcnn/ms_rcnn_r50_caffe_fpn_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'../mask_rcnn/mask_rcnn_r50_caffe_fpn_1x_coco.py'
model
=
dict
(
type
=
'MaskScoringRCNN'
,
roi_head
=
dict
(
type
=
'MaskScoringRoIHead'
,
mask_iou_head
=
dict
(
type
=
'MaskIoUHead'
,
num_convs
=
4
,
num_fcs
=
2
,
roi_feat_size
=
14
,
in_channels
=
256
,
conv_out_channels
=
256
,
fc_out_channels
=
1024
,
num_classes
=
80
)),
# model training and testing settings
train_cfg
=
dict
(
rcnn
=
dict
(
mask_thr_binary
=
0.5
)))
Prev
1
…
39
40
41
42
43
44
45
46
47
…
49
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment