Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
dcuai
dlexamples
Commits
85529f35
Commit
85529f35
authored
Jul 30, 2022
by
unknown
Browse files
添加openmmlab测试用例
parent
b21b0c01
Changes
977
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
402 additions
and
0 deletions
+402
-0
openmmlab_test/mmdetection-speed_xinpian/configs/lvis/mask_rcnn_r101_fpn_sample1e-3_mstrain_1x_lvis_v1.py
.../lvis/mask_rcnn_r101_fpn_sample1e-3_mstrain_1x_lvis_v1.py
+2
-0
openmmlab_test/mmdetection-speed_xinpian/configs/lvis/mask_rcnn_r101_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py
...vis/mask_rcnn_r101_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py
+2
-0
openmmlab_test/mmdetection-speed_xinpian/configs/lvis/mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis_v1.py
...s/lvis/mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis_v1.py
+31
-0
openmmlab_test/mmdetection-speed_xinpian/configs/lvis/mask_rcnn_r50_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py
...lvis/mask_rcnn_r50_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py
+31
-0
openmmlab_test/mmdetection-speed_xinpian/configs/lvis/mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_1x_lvis_v1.py
...mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_1x_lvis_v1.py
+13
-0
openmmlab_test/mmdetection-speed_xinpian/configs/lvis/mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py
...sk_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py
+13
-0
openmmlab_test/mmdetection-speed_xinpian/configs/lvis/mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_1x_lvis_v1.py
...mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_1x_lvis_v1.py
+13
-0
openmmlab_test/mmdetection-speed_xinpian/configs/lvis/mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py
...sk_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py
+13
-0
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/README.md
...est/mmdetection-speed_xinpian/configs/mask_rcnn/README.md
+48
-0
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_r101_caffe_fpn_1x_coco.py
...ian/configs/mask_rcnn/mask_rcnn_r101_caffe_fpn_1x_coco.py
+4
-0
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_r101_caffe_fpn_mstrain-poly_3x_coco.py
...ask_rcnn/mask_rcnn_r101_caffe_fpn_mstrain-poly_3x_coco.py
+53
-0
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_r101_fpn_1x_coco.py
...d_xinpian/configs/mask_rcnn/mask_rcnn_r101_fpn_1x_coco.py
+2
-0
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_r101_fpn_2x_coco.py
...d_xinpian/configs/mask_rcnn/mask_rcnn_r101_fpn_2x_coco.py
+2
-0
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_r101_fpn_mstrain-poly_3x_coco.py
...figs/mask_rcnn/mask_rcnn_r101_fpn_mstrain-poly_3x_coco.py
+6
-0
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_r50_caffe_c4_1x_coco.py
...npian/configs/mask_rcnn/mask_rcnn_r50_caffe_c4_1x_coco.py
+39
-0
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_1x_coco.py
...pian/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_1x_coco.py
+36
-0
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco.py
...mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco.py
+45
-0
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco.py
...mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco.py
+4
-0
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco.py
...mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco.py
+4
-0
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain_1x_coco.py
...figs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain_1x_coco.py
+41
-0
No files found.
Too many changes to show.
To preserve performance only
977 of 977+
files are displayed.
Plain diff
Email patch
openmmlab_test/mmdetection-speed_xinpian/configs/lvis/mask_rcnn_r101_fpn_sample1e-3_mstrain_1x_lvis_v1.py
0 → 100644
View file @
85529f35
_base_
=
'./mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis_v1.py'
model
=
dict
(
pretrained
=
'torchvision://resnet101'
,
backbone
=
dict
(
depth
=
101
))
openmmlab_test/mmdetection-speed_xinpian/configs/lvis/mask_rcnn_r101_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py
0 → 100644
View file @
85529f35
_base_
=
'./mask_rcnn_r50_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py'
model
=
dict
(
pretrained
=
'torchvision://resnet101'
,
backbone
=
dict
(
depth
=
101
))
openmmlab_test/mmdetection-speed_xinpian/configs/lvis/mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis_v1.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/mask_rcnn_r50_fpn.py'
,
'../_base_/datasets/lvis_v1_instance.py'
,
'../_base_/schedules/schedule_1x.py'
,
'../_base_/default_runtime.py'
]
model
=
dict
(
roi_head
=
dict
(
bbox_head
=
dict
(
num_classes
=
1203
),
mask_head
=
dict
(
num_classes
=
1203
)),
test_cfg
=
dict
(
rcnn
=
dict
(
score_thr
=
0.0001
,
# LVIS allows up to 300
max_per_img
=
300
)))
img_norm_cfg
=
dict
(
mean
=
[
123.675
,
116.28
,
103.53
],
std
=
[
58.395
,
57.12
,
57.375
],
to_rgb
=
True
)
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
,
with_mask
=
True
),
dict
(
type
=
'Resize'
,
img_scale
=
[(
1333
,
640
),
(
1333
,
672
),
(
1333
,
704
),
(
1333
,
736
),
(
1333
,
768
),
(
1333
,
800
)],
multiscale_mode
=
'value'
,
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
,
flip_ratio
=
0.5
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'DefaultFormatBundle'
),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_bboxes'
,
'gt_labels'
,
'gt_masks'
]),
]
data
=
dict
(
train
=
dict
(
dataset
=
dict
(
pipeline
=
train_pipeline
)))
openmmlab_test/mmdetection-speed_xinpian/configs/lvis/mask_rcnn_r50_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/mask_rcnn_r50_fpn.py'
,
'../_base_/datasets/lvis_v0.5_instance.py'
,
'../_base_/schedules/schedule_2x.py'
,
'../_base_/default_runtime.py'
]
model
=
dict
(
roi_head
=
dict
(
bbox_head
=
dict
(
num_classes
=
1230
),
mask_head
=
dict
(
num_classes
=
1230
)),
test_cfg
=
dict
(
rcnn
=
dict
(
score_thr
=
0.0001
,
# LVIS allows up to 300
max_per_img
=
300
)))
img_norm_cfg
=
dict
(
mean
=
[
123.675
,
116.28
,
103.53
],
std
=
[
58.395
,
57.12
,
57.375
],
to_rgb
=
True
)
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
,
with_mask
=
True
),
dict
(
type
=
'Resize'
,
img_scale
=
[(
1333
,
640
),
(
1333
,
672
),
(
1333
,
704
),
(
1333
,
736
),
(
1333
,
768
),
(
1333
,
800
)],
multiscale_mode
=
'value'
,
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
,
flip_ratio
=
0.5
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'DefaultFormatBundle'
),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_bboxes'
,
'gt_labels'
,
'gt_masks'
]),
]
data
=
dict
(
train
=
dict
(
dataset
=
dict
(
pipeline
=
train_pipeline
)))
openmmlab_test/mmdetection-speed_xinpian/configs/lvis/mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_1x_lvis_v1.py
0 → 100644
View file @
85529f35
_base_
=
'./mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis_v1.py'
model
=
dict
(
pretrained
=
'open-mmlab://resnext101_32x4d'
,
backbone
=
dict
(
type
=
'ResNeXt'
,
depth
=
101
,
groups
=
32
,
base_width
=
4
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
),
style
=
'pytorch'
))
openmmlab_test/mmdetection-speed_xinpian/configs/lvis/mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py
0 → 100644
View file @
85529f35
_base_
=
'./mask_rcnn_r50_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py'
model
=
dict
(
pretrained
=
'open-mmlab://resnext101_32x4d'
,
backbone
=
dict
(
type
=
'ResNeXt'
,
depth
=
101
,
groups
=
32
,
base_width
=
4
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
),
style
=
'pytorch'
))
openmmlab_test/mmdetection-speed_xinpian/configs/lvis/mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_1x_lvis_v1.py
0 → 100644
View file @
85529f35
_base_
=
'./mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis_v1.py'
model
=
dict
(
pretrained
=
'open-mmlab://resnext101_64x4d'
,
backbone
=
dict
(
type
=
'ResNeXt'
,
depth
=
101
,
groups
=
64
,
base_width
=
4
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
),
style
=
'pytorch'
))
openmmlab_test/mmdetection-speed_xinpian/configs/lvis/mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py
0 → 100644
View file @
85529f35
_base_
=
'./mask_rcnn_r50_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py'
model
=
dict
(
pretrained
=
'open-mmlab://resnext101_64x4d'
,
backbone
=
dict
(
type
=
'ResNeXt'
,
depth
=
101
,
groups
=
64
,
base_width
=
4
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
),
style
=
'pytorch'
))
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/README.md
0 → 100644
View file @
85529f35
# Mask R-CNN
## Introduction
<!-- [ALGORITHM] -->
```
latex
@article
{
He
_
2017,
title=
{
Mask R-CNN
}
,
journal=
{
2017 IEEE International Conference on Computer Vision (ICCV)
}
,
publisher=
{
IEEE
}
,
author=
{
He, Kaiming and Gkioxari, Georgia and Dollar, Piotr and Girshick, Ross
}
,
year=
{
2017
}
,
month=
{
Oct
}
}
```
## Results and models
| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :-----: | :------: | :--------: |
| R-50-FPN | caffe | 1x | 4.3 | | 38.0 | 34.4 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_1x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_caffe_fpn_1x_coco/mask_rcnn_r50_caffe_fpn_1x_coco_bbox_mAP-0.38__segm_mAP-0.344_20200504_231812-0ebd1859.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_caffe_fpn_1x_coco/mask_rcnn_r50_caffe_fpn_1x_coco_20200504_231812.log.json
)
|
| R-50-FPN | pytorch | 1x | 4.4 | 16.1 | 38.2 | 34.7 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_1x_coco/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_1x_coco/mask_rcnn_r50_fpn_1x_coco_20200205_050542.log.json
)
|
| R-50-FPN | pytorch | 2x | - | - | 39.2 | 35.4 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_r50_fpn_2x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_2x_coco/mask_rcnn_r50_fpn_2x_coco_bbox_mAP-0.392__segm_mAP-0.354_20200505_003907-3e542a40.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_2x_coco/mask_rcnn_r50_fpn_2x_coco_20200505_003907.log.json
)
|
| R-101-FPN | caffe | 1x | | | 40.4 | 36.4 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_r101_caffe_fpn_1x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_caffe_fpn_1x_coco/mask_rcnn_r101_caffe_fpn_1x_coco_20200601_095758-805e06c1.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_caffe_fpn_1x_coco/mask_rcnn_r101_caffe_fpn_1x_coco_20200601_095758.log.json
)
|
| R-101-FPN | pytorch | 1x | 6.4 | 13.5 | 40.0 | 36.1 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_r101_fpn_1x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_fpn_1x_coco/mask_rcnn_r101_fpn_1x_coco_20200204-1efe0ed5.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_fpn_1x_coco/mask_rcnn_r101_fpn_1x_coco_20200204_144809.log.json
)
|
| R-101-FPN | pytorch | 2x | - | - | 40.8 | 36.6 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_r101_fpn_2x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_fpn_2x_coco/mask_rcnn_r101_fpn_2x_coco_bbox_mAP-0.408__segm_mAP-0.366_20200505_071027-14b391c7.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_fpn_2x_coco/mask_rcnn_r101_fpn_2x_coco_20200505_071027.log.json
)
|
| X-101-32x4d-FPN | pytorch | 1x | 7.6 | 11.3 | 41.9 | 37.5 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco/mask_rcnn_x101_32x4d_fpn_1x_coco_20200205-478d0b67.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco/mask_rcnn_x101_32x4d_fpn_1x_coco_20200205_034906.log.json
)
|
| X-101-32x4d-FPN | pytorch | 2x | - | - | 42.2 | 37.8 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_2x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_32x4d_fpn_2x_coco/mask_rcnn_x101_32x4d_fpn_2x_coco_bbox_mAP-0.422__segm_mAP-0.378_20200506_004702-faef898c.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_32x4d_fpn_2x_coco/mask_rcnn_x101_32x4d_fpn_2x_coco_20200506_004702.log.json
)
|
| X-101-64x4d-FPN | pytorch | 1x | 10.7 | 8.0 | 42.8 | 38.4 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_x101_64x4d_fpn_1x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_64x4d_fpn_1x_coco/mask_rcnn_x101_64x4d_fpn_1x_coco_20200201-9352eb0d.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_64x4d_fpn_1x_coco/mask_rcnn_x101_64x4d_fpn_1x_coco_20200201_124310.log.json
)
|
| X-101-64x4d-FPN | pytorch | 2x | - | - | 42.7 | 38.1 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_x101_64x4d_fpn_2x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_64x4d_fpn_2x_coco/mask_rcnn_x101_64x4d_fpn_2x_coco_20200509_224208-39d6f70c.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_64x4d_fpn_2x_coco/mask_rcnn_x101_64x4d_fpn_2x_coco_20200509_224208.log.json
)
|
| X-101-32x8d-FPN | pytorch | 1x | - | - | 42.8 | 38.3 | |
## Pre-trained Models
We also train some models with longer schedules and multi-scale training. The users could finetune them for downstream tasks.
| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :-----: | :------: | :--------: |
|
[
R-50-FPN
](
./mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco.py
)
| caffe | 2x | 4.3 | | 40.3 | 36.5 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco/mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco_bbox_mAP-0.403__segm_mAP-0.365_20200504_231822-a75c98ce.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco/mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco_20200504_231822.log.json
)
|
[
R-50-FPN
](
./mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco.py
)
| caffe | 3x | 4.3 | | 40.8 | 37.0 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_bbox_mAP-0.408__segm_mAP-0.37_20200504_163245-42aa3d00.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_20200504_163245.log.json
)
|
[
R-50-FPN
](
./mask_rcnn_r50_fpn_mstrain-poly_3x_coco.py
)
| pytorch| 3x | 4.1 | | 40.9 | 37.1 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_r50_fpn_mstrain-poly_3x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_mstrain-poly_3x_coco/mask_rcnn_r50_fpn_mstrain-poly_3x_coco_20210524_201154-21b550bb.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_mstrain-poly_3x_coco/mask_rcnn_r50_fpn_mstrain-poly_3x_coco_20210524_201154.log.json
)
|
[
R-101-FPN
](
./mask_rcnn_r101_caffe_fpn_mstrain-poly_3x_coco.py
)
| caffe | 3x | 5.9 | | 42.9 | 38.5 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_r101_caffe_fpn_mstrain-poly_3x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_caffe_fpn_mstrain-poly_3x_coco/mask_rcnn_r101_caffe_fpn_mstrain-poly_3x_coco_20210526_132339-3c33ce02.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn_r101_caffe_fpn_mstrain-poly_3x_coco/mask_rcnn_r101_caffe_fpn_mstrain-poly_3x_coco_20210526_132339.log.json
)
|
[
R-101-FPN
](
./mask_rcnn_r101_fpn_mstrain-poly_3x_coco.py
)
| pytorch| 3x | 6.1 | | 42.7 | 38.5 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_r101_fpn_mstrain-poly_3x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_fpn_mstrain-poly_3x_coco/mask_rcnn_r101_fpn_mstrain-poly_3x_coco_20210524_200244-5675c317.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_fpn_mstrain-poly_3x_coco/mask_rcnn_r101_fpn_mstrain-poly_3x_coco_20210524_200244.log.json
)
|
[
x101-32x4d-FPN
](
./mask_rcnn_x101_32x4d_fpn_mstrain-poly_3x_coco.py
)
| pytorch| 3x | 7.3 | | 43.6 | 39.0 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_mstrain-poly_3x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_32x4d_fpn_mstrain-poly_3x_coco/mask_rcnn_x101_32x4d_fpn_mstrain-poly_3x_coco_20210524_201410-abcd7859.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_32x4d_fpn_mstrain-poly_3x_coco/mask_rcnn_x101_32x4d_fpn_mstrain-poly_3x_coco_20210524_201410.log.json
)
|
[
X-101-32x8d-FPN
](
./mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco.py
)
| pytorch | 1x | - | | 43.6 | 39.0 |
|
[
X-101-32x8d-FPN
](
./mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco.py
)
| pytorch | 3x | 10.3 | | 44.3 | 39.5 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco/mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco_20210607_161042-8bd2c639.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco/mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco_20210607_161042.log.json
)
|
[
X-101-64x4d-FPN
](
./mask_rcnn_x101_64x4d_fpn_mstrain-poly_3x_coco.py
)
| pytorch | 3x | 10.4 | | 44.5 | 39.7 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_x101_64x4d_fpn_mstrain-poly_3x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_64x4d_fpn_mstrain-poly_3x_coco/mask_rcnn_x101_64x4d_fpn_mstrain-poly_3x_coco_20210526_120447-c376f129.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_64x4d_fpn_mstrain-poly_3x_coco/mask_rcnn_x101_64x4d_fpn_mstrain-poly_3x_coco_20210526_120447.log.json
)
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_r101_caffe_fpn_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./mask_rcnn_r50_caffe_fpn_1x_coco.py'
model
=
dict
(
pretrained
=
'open-mmlab://detectron2/resnet101_caffe'
,
backbone
=
dict
(
depth
=
101
))
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_r101_caffe_fpn_mstrain-poly_3x_coco.py
0 → 100644
View file @
85529f35
_base_
=
[
'../common/mstrain-poly_3x_coco_instance.py'
,
'../_base_/models/mask_rcnn_r50_fpn.py'
]
model
=
dict
(
pretrained
=
'open-mmlab://detectron2/resnet101_caffe'
,
backbone
=
dict
(
depth
=
101
,
norm_cfg
=
dict
(
requires_grad
=
False
),
norm_eval
=
True
,
style
=
'caffe'
))
# use caffe img_norm
img_norm_cfg
=
dict
(
mean
=
[
103.530
,
116.280
,
123.675
],
std
=
[
1.0
,
1.0
,
1.0
],
to_rgb
=
False
)
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
,
with_mask
=
True
,
poly2mask
=
False
),
dict
(
type
=
'Resize'
,
img_scale
=
[(
1333
,
640
),
(
1333
,
800
)],
multiscale_mode
=
'range'
,
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
,
flip_ratio
=
0.5
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'DefaultFormatBundle'
),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_bboxes'
,
'gt_labels'
,
'gt_masks'
]),
]
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'MultiScaleFlipAug'
,
img_scale
=
(
1333
,
800
),
flip
=
False
,
transforms
=
[
dict
(
type
=
'Resize'
,
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
]),
])
]
data
=
dict
(
train
=
dict
(
dataset
=
dict
(
pipeline
=
train_pipeline
)),
val
=
dict
(
pipeline
=
test_pipeline
),
test
=
dict
(
pipeline
=
test_pipeline
))
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_r101_fpn_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./mask_rcnn_r50_fpn_1x_coco.py'
model
=
dict
(
pretrained
=
'torchvision://resnet101'
,
backbone
=
dict
(
depth
=
101
))
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_r101_fpn_2x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./mask_rcnn_r50_fpn_2x_coco.py'
model
=
dict
(
pretrained
=
'torchvision://resnet101'
,
backbone
=
dict
(
depth
=
101
))
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_r101_fpn_mstrain-poly_3x_coco.py
0 → 100644
View file @
85529f35
_base_
=
[
'../common/mstrain-poly_3x_coco_instance.py'
,
'../_base_/models/mask_rcnn_r50_fpn.py'
]
model
=
dict
(
pretrained
=
'torchvision://resnet101'
,
backbone
=
dict
(
depth
=
101
))
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_r50_caffe_c4_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/mask_rcnn_r50_caffe_c4.py'
,
'../_base_/datasets/coco_instance.py'
,
'../_base_/schedules/schedule_1x.py'
,
'../_base_/default_runtime.py'
]
# use caffe img_norm
img_norm_cfg
=
dict
(
mean
=
[
103.530
,
116.280
,
123.675
],
std
=
[
1.0
,
1.0
,
1.0
],
to_rgb
=
False
)
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
,
with_mask
=
True
),
dict
(
type
=
'Resize'
,
img_scale
=
(
1333
,
800
),
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
,
flip_ratio
=
0.5
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'DefaultFormatBundle'
),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_bboxes'
,
'gt_labels'
,
'gt_masks'
]),
]
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'MultiScaleFlipAug'
,
img_scale
=
(
1333
,
800
),
flip
=
False
,
transforms
=
[
dict
(
type
=
'Resize'
,
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
]),
])
]
data
=
dict
(
train
=
dict
(
pipeline
=
train_pipeline
),
val
=
dict
(
pipeline
=
test_pipeline
),
test
=
dict
(
pipeline
=
test_pipeline
))
# optimizer
optimizer
=
dict
(
type
=
'SGD'
,
lr
=
0.01
,
momentum
=
0.9
,
weight_decay
=
0.0001
)
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./mask_rcnn_r50_fpn_1x_coco.py'
model
=
dict
(
pretrained
=
'open-mmlab://detectron2/resnet50_caffe'
,
backbone
=
dict
(
norm_cfg
=
dict
(
requires_grad
=
False
),
style
=
'caffe'
))
# use caffe img_norm
img_norm_cfg
=
dict
(
mean
=
[
103.530
,
116.280
,
123.675
],
std
=
[
1.0
,
1.0
,
1.0
],
to_rgb
=
False
)
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
,
with_mask
=
True
),
dict
(
type
=
'Resize'
,
img_scale
=
(
1333
,
800
),
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
,
flip_ratio
=
0.5
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'DefaultFormatBundle'
),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_bboxes'
,
'gt_labels'
,
'gt_masks'
]),
]
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'MultiScaleFlipAug'
,
img_scale
=
(
1333
,
800
),
flip
=
False
,
transforms
=
[
dict
(
type
=
'Resize'
,
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
]),
])
]
data
=
dict
(
train
=
dict
(
pipeline
=
train_pipeline
),
val
=
dict
(
pipeline
=
test_pipeline
),
test
=
dict
(
pipeline
=
test_pipeline
))
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./mask_rcnn_r50_fpn_1x_coco.py'
model
=
dict
(
pretrained
=
'open-mmlab://detectron2/resnet50_caffe'
,
backbone
=
dict
(
norm_cfg
=
dict
(
requires_grad
=
False
),
style
=
'caffe'
))
# use caffe img_norm
img_norm_cfg
=
dict
(
mean
=
[
103.530
,
116.280
,
123.675
],
std
=
[
1.0
,
1.0
,
1.0
],
to_rgb
=
False
)
train_pipeline
=
[
dict
(
type
=
'LoadImageFromWebcam'
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
,
with_mask
=
True
,
poly2mask
=
False
),
dict
(
type
=
'Resize'
,
img_scale
=
[(
1333
,
640
),
(
1333
,
672
),
(
1333
,
704
),
(
1333
,
736
),
(
1333
,
768
),
(
1333
,
800
)],
multiscale_mode
=
'value'
,
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
,
flip_ratio
=
0.5
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'DefaultFormatBundle'
),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_bboxes'
,
'gt_labels'
,
'gt_masks'
]),
]
test_pipeline
=
[
dict
(
type
=
'LoadImageFromWebcam'
),
dict
(
type
=
'MultiScaleFlipAug'
,
img_scale
=
(
1333
,
800
),
flip
=
False
,
transforms
=
[
dict
(
type
=
'Resize'
,
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
]),
])
]
data
=
dict
(
train
=
dict
(
pipeline
=
train_pipeline
),
val
=
dict
(
pipeline
=
test_pipeline
),
test
=
dict
(
pipeline
=
test_pipeline
))
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco.py'
# learning policy
lr_config
=
dict
(
step
=
[
16
,
23
])
runner
=
dict
(
type
=
'EpochBasedRunner'
,
max_epochs
=
24
)
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco.py'
# learning policy
lr_config
=
dict
(
step
=
[
28
,
34
])
runner
=
dict
(
type
=
'EpochBasedRunner'
,
max_epochs
=
36
)
openmmlab_test/mmdetection-speed_xinpian/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./mask_rcnn_r50_fpn_1x_coco.py'
model
=
dict
(
pretrained
=
'open-mmlab://detectron2/resnet50_caffe'
,
backbone
=
dict
(
norm_cfg
=
dict
(
requires_grad
=
False
),
style
=
'caffe'
))
# use caffe img_norm
img_norm_cfg
=
dict
(
mean
=
[
103.530
,
116.280
,
123.675
],
std
=
[
1.0
,
1.0
,
1.0
],
to_rgb
=
False
)
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
,
with_mask
=
True
),
dict
(
type
=
'Resize'
,
img_scale
=
[(
1333
,
640
),
(
1333
,
672
),
(
1333
,
704
),
(
1333
,
736
),
(
1333
,
768
),
(
1333
,
800
)],
multiscale_mode
=
'value'
,
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
,
flip_ratio
=
0.5
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'DefaultFormatBundle'
),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_bboxes'
,
'gt_labels'
,
'gt_masks'
]),
]
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'MultiScaleFlipAug'
,
img_scale
=
(
1333
,
800
),
flip
=
False
,
transforms
=
[
dict
(
type
=
'Resize'
,
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
]),
])
]
data
=
dict
(
train
=
dict
(
pipeline
=
train_pipeline
),
val
=
dict
(
pipeline
=
test_pipeline
),
test
=
dict
(
pipeline
=
test_pipeline
))
Prev
1
…
38
39
40
41
42
43
44
45
46
…
49
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment