We provide config files to reproduce the results in the CVPR 2019 paper for [Hybrid Task Cascade](https://arxiv.org/abs/1901.07518).
```latex
@inproceedings{chen2019hybrid,
title={Hybrid task cascade for instance segmentation},
author={Chen, Kai and Pang, Jiangmiao and Wang, Jiaqi and Xiong, Yu and Li, Xiaoxiao and Sun, Shuyang and Feng, Wansen and Liu, Ziwei and Shi, Jianping and Ouyang, Wanli and Chen Change Loy and Dahua Lin},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
year={2019}
}
```
## Dataset
HTC requires COCO and [COCO-stuff](http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/stuffthingmaps_trainval2017.zip) dataset for training. You need to download and extract it in the COCO dataset path.
The directory should be like this.
```none
mmdetection
├── mmdet
├── tools
├── configs
├── data
│ ├── coco
│ │ ├── annotations
│ │ ├── train2017
│ │ ├── val2017
│ │ ├── test2017
| | ├── stuffthingmaps
```
## Results and Models
The results on COCO 2017val are shown in the below table. (results on test-dev are usually slightly higher than val)
| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
Configs in this directory is the implementation for ICCV2019 paper "InstaBoost: Boosting Instance Segmentation Via Probability Map Guided Copy-Pasting" and provided by the authors of the paper. InstaBoost is a data augmentation method for object detection and instance segmentation. The paper has been released on [`arXiv`](https://arxiv.org/abs/1908.07801).
```latex
@inproceedings{fang2019instaboost,
title={Instaboost: Boosting instance segmentation via probability map guided copy-pasting},
author={Fang, Hao-Shu and Sun, Jianhua and Wang, Runzhong and Gou, Minghao and Li, Yong-Lu and Lu, Cewu},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={682--691},
year={2019}
}
```
## Usage
### Requirements
You need to install `instaboostfast` before using it.
```shell
pip install instaboostfast
```
The code and more details can be found [here](https://github.com/GothicAi/Instaboost).
### Integration with MMDetection
InstaBoost have been already integrated in the data pipeline, thus all you need is to add or change **InstaBoost** configurations after **LoadImageFromFile**. We have provided examples like [this](mask_rcnn_r50_fpn_instaboost_4x#L121). You can refer to [`InstaBoostConfig`](https://github.com/GothicAi/InstaBoost-pypi#instaboostconfig) for more details.
## Results and Models
- All models were trained on `coco_2017_train` and tested on `coco_2017_val` for conveinience of evaluation and comparison. In the paper, the results are obtained from `test-dev`.
- To balance accuracy and training time when using InstaBoost, models released in this page are all trained for 48 Epochs. Other training and testing configs strictly follow the original framework.
- For results and models in MMDetection V1.x, please refer to [Instaboost](https://github.com/GothicAi/Instaboost).
| Network | Backbone | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |