Commit 85529f35 authored by unknown's avatar unknown
Browse files

添加openmmlab测试用例

parent b21b0c01
_base_ = './faster_rcnn_hrnetv2p_w32_1x_coco.py'
# learning policy
lr_config = dict(step=[16, 22])
runner = dict(type='EpochBasedRunner', max_epochs=24)
_base_ = './faster_rcnn_hrnetv2p_w32_1x_coco.py'
model = dict(
pretrained='open-mmlab://msra/hrnetv2_w40',
backbone=dict(
type='HRNet',
extra=dict(
stage2=dict(num_channels=(40, 80)),
stage3=dict(num_channels=(40, 80, 160)),
stage4=dict(num_channels=(40, 80, 160, 320)))),
neck=dict(type='HRFPN', in_channels=[40, 80, 160, 320], out_channels=256))
_base_ = './faster_rcnn_hrnetv2p_w40_1x_coco.py'
# learning policy
lr_config = dict(step=[16, 22])
runner = dict(type='EpochBasedRunner', max_epochs=24)
_base_ = './fcos_hrnetv2p_w32_gn-head_4x4_1x_coco.py'
model = dict(
pretrained='open-mmlab://msra/hrnetv2_w18',
backbone=dict(
extra=dict(
stage2=dict(num_channels=(18, 36)),
stage3=dict(num_channels=(18, 36, 72)),
stage4=dict(num_channels=(18, 36, 72, 144)))),
neck=dict(type='HRFPN', in_channels=[18, 36, 72, 144], out_channels=256))
_base_ = './fcos_hrnetv2p_w18_gn-head_4x4_1x_coco.py'
# learning policy
lr_config = dict(step=[16, 22])
runner = dict(type='EpochBasedRunner', max_epochs=24)
_base_ = './fcos_hrnetv2p_w32_gn-head_mstrain_640-800_4x4_2x_coco.py'
model = dict(
pretrained='open-mmlab://msra/hrnetv2_w18',
backbone=dict(
extra=dict(
stage2=dict(num_channels=(18, 36)),
stage3=dict(num_channels=(18, 36, 72)),
stage4=dict(num_channels=(18, 36, 72, 144)))),
neck=dict(type='HRFPN', in_channels=[18, 36, 72, 144], out_channels=256))
_base_ = '../fcos/fcos_r50_caffe_fpn_gn-head_4x4_1x_coco.py'
model = dict(
pretrained='open-mmlab://msra/hrnetv2_w32',
backbone=dict(
_delete_=True,
type='HRNet',
extra=dict(
stage1=dict(
num_modules=1,
num_branches=1,
block='BOTTLENECK',
num_blocks=(4, ),
num_channels=(64, )),
stage2=dict(
num_modules=1,
num_branches=2,
block='BASIC',
num_blocks=(4, 4),
num_channels=(32, 64)),
stage3=dict(
num_modules=4,
num_branches=3,
block='BASIC',
num_blocks=(4, 4, 4),
num_channels=(32, 64, 128)),
stage4=dict(
num_modules=3,
num_branches=4,
block='BASIC',
num_blocks=(4, 4, 4, 4),
num_channels=(32, 64, 128, 256)))),
neck=dict(
_delete_=True,
type='HRFPN',
in_channels=[32, 64, 128, 256],
out_channels=256,
stride=2,
num_outs=5))
img_norm_cfg = dict(
mean=[103.53, 116.28, 123.675], std=[57.375, 57.12, 58.395], to_rgb=False)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))
_base_ = './fcos_hrnetv2p_w32_gn-head_4x4_1x_coco.py'
# learning policy
lr_config = dict(step=[16, 22])
runner = dict(type='EpochBasedRunner', max_epochs=24)
_base_ = './fcos_hrnetv2p_w32_gn-head_4x4_1x_coco.py'
img_norm_cfg = dict(
mean=[103.53, 116.28, 123.675], std=[57.375, 57.12, 58.395], to_rgb=False)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='Resize',
img_scale=[(1333, 640), (1333, 800)],
multiscale_mode='value',
keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))
# learning policy
lr_config = dict(step=[16, 22])
runner = dict(type='EpochBasedRunner', max_epochs=24)
_base_ = './fcos_hrnetv2p_w32_gn-head_mstrain_640-800_4x4_2x_coco.py'
model = dict(
pretrained='open-mmlab://msra/hrnetv2_w40',
backbone=dict(
type='HRNet',
extra=dict(
stage2=dict(num_channels=(40, 80)),
stage3=dict(num_channels=(40, 80, 160)),
stage4=dict(num_channels=(40, 80, 160, 320)))),
neck=dict(type='HRFPN', in_channels=[40, 80, 160, 320], out_channels=256))
_base_ = './htc_hrnetv2p_w32_20e_coco.py'
model = dict(
pretrained='open-mmlab://msra/hrnetv2_w18',
backbone=dict(
extra=dict(
stage2=dict(num_channels=(18, 36)),
stage3=dict(num_channels=(18, 36, 72)),
stage4=dict(num_channels=(18, 36, 72, 144)))),
neck=dict(type='HRFPN', in_channels=[18, 36, 72, 144], out_channels=256))
_base_ = '../htc/htc_r50_fpn_20e_coco.py'
model = dict(
pretrained='open-mmlab://msra/hrnetv2_w32',
backbone=dict(
_delete_=True,
type='HRNet',
extra=dict(
stage1=dict(
num_modules=1,
num_branches=1,
block='BOTTLENECK',
num_blocks=(4, ),
num_channels=(64, )),
stage2=dict(
num_modules=1,
num_branches=2,
block='BASIC',
num_blocks=(4, 4),
num_channels=(32, 64)),
stage3=dict(
num_modules=4,
num_branches=3,
block='BASIC',
num_blocks=(4, 4, 4),
num_channels=(32, 64, 128)),
stage4=dict(
num_modules=3,
num_branches=4,
block='BASIC',
num_blocks=(4, 4, 4, 4),
num_channels=(32, 64, 128, 256)))),
neck=dict(
_delete_=True,
type='HRFPN',
in_channels=[32, 64, 128, 256],
out_channels=256))
_base_ = './htc_hrnetv2p_w32_20e_coco.py'
model = dict(
pretrained='open-mmlab://msra/hrnetv2_w40',
backbone=dict(
type='HRNet',
extra=dict(
stage2=dict(num_channels=(40, 80)),
stage3=dict(num_channels=(40, 80, 160)),
stage4=dict(num_channels=(40, 80, 160, 320)))),
neck=dict(type='HRFPN', in_channels=[40, 80, 160, 320], out_channels=256))
_base_ = './htc_hrnetv2p_w40_20e_coco.py'
# learning policy
lr_config = dict(step=[24, 27])
runner = dict(type='EpochBasedRunner', max_epochs=28)
_base_ = '../htc/htc_x101_64x4d_fpn_16x1_20e_coco.py'
# learning policy
lr_config = dict(step=[24, 27])
runner = dict(type='EpochBasedRunner', max_epochs=28)
_base_ = './mask_rcnn_hrnetv2p_w32_1x_coco.py'
model = dict(
pretrained='open-mmlab://msra/hrnetv2_w18',
backbone=dict(
extra=dict(
stage2=dict(num_channels=(18, 36)),
stage3=dict(num_channels=(18, 36, 72)),
stage4=dict(num_channels=(18, 36, 72, 144)))),
neck=dict(type='HRFPN', in_channels=[18, 36, 72, 144], out_channels=256))
_base_ = './mask_rcnn_hrnetv2p_w18_1x_coco.py'
# learning policy
lr_config = dict(step=[16, 22])
runner = dict(type='EpochBasedRunner', max_epochs=24)
_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
model = dict(
pretrained='open-mmlab://msra/hrnetv2_w32',
backbone=dict(
_delete_=True,
type='HRNet',
extra=dict(
stage1=dict(
num_modules=1,
num_branches=1,
block='BOTTLENECK',
num_blocks=(4, ),
num_channels=(64, )),
stage2=dict(
num_modules=1,
num_branches=2,
block='BASIC',
num_blocks=(4, 4),
num_channels=(32, 64)),
stage3=dict(
num_modules=4,
num_branches=3,
block='BASIC',
num_blocks=(4, 4, 4),
num_channels=(32, 64, 128)),
stage4=dict(
num_modules=3,
num_branches=4,
block='BASIC',
num_blocks=(4, 4, 4, 4),
num_channels=(32, 64, 128, 256)))),
neck=dict(
_delete_=True,
type='HRFPN',
in_channels=[32, 64, 128, 256],
out_channels=256))
_base_ = './mask_rcnn_hrnetv2p_w32_1x_coco.py'
# learning policy
lr_config = dict(step=[16, 22])
runner = dict(type='EpochBasedRunner', max_epochs=24)
_base_ = './mask_rcnn_hrnetv2p_w18_1x_coco.py'
model = dict(
pretrained='open-mmlab://msra/hrnetv2_w40',
backbone=dict(
type='HRNet',
extra=dict(
stage2=dict(num_channels=(40, 80)),
stage3=dict(num_channels=(40, 80, 160)),
stage4=dict(num_channels=(40, 80, 160, 320)))),
neck=dict(type='HRFPN', in_channels=[40, 80, 160, 320], out_channels=256))
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment