Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
dcuai
dlexamples
Commits
85529f35
Commit
85529f35
authored
Jul 30, 2022
by
unknown
Browse files
添加openmmlab测试用例
parent
b21b0c01
Changes
977
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
681 additions
and
0 deletions
+681
-0
openmmlab_test/mmdetection-speed_xinpian/configs/guided_anchoring/ga_retinanet_r50_caffe_fpn_1x_coco.py
...gs/guided_anchoring/ga_retinanet_r50_caffe_fpn_1x_coco.py
+62
-0
openmmlab_test/mmdetection-speed_xinpian/configs/guided_anchoring/ga_retinanet_r50_fpn_1x_coco.py
.../configs/guided_anchoring/ga_retinanet_r50_fpn_1x_coco.py
+62
-0
openmmlab_test/mmdetection-speed_xinpian/configs/guided_anchoring/ga_retinanet_x101_32x4d_fpn_1x_coco.py
...s/guided_anchoring/ga_retinanet_x101_32x4d_fpn_1x_coco.py
+13
-0
openmmlab_test/mmdetection-speed_xinpian/configs/guided_anchoring/ga_retinanet_x101_64x4d_fpn_1x_coco.py
...s/guided_anchoring/ga_retinanet_x101_64x4d_fpn_1x_coco.py
+13
-0
openmmlab_test/mmdetection-speed_xinpian/configs/guided_anchoring/ga_rpn_r101_caffe_fpn_1x_coco.py
...configs/guided_anchoring/ga_rpn_r101_caffe_fpn_1x_coco.py
+5
-0
openmmlab_test/mmdetection-speed_xinpian/configs/guided_anchoring/ga_rpn_r50_caffe_fpn_1x_coco.py
.../configs/guided_anchoring/ga_rpn_r50_caffe_fpn_1x_coco.py
+58
-0
openmmlab_test/mmdetection-speed_xinpian/configs/guided_anchoring/ga_rpn_r50_fpn_1x_coco.py
...inpian/configs/guided_anchoring/ga_rpn_r50_fpn_1x_coco.py
+58
-0
openmmlab_test/mmdetection-speed_xinpian/configs/guided_anchoring/ga_rpn_x101_32x4d_fpn_1x_coco.py
...configs/guided_anchoring/ga_rpn_x101_32x4d_fpn_1x_coco.py
+13
-0
openmmlab_test/mmdetection-speed_xinpian/configs/guided_anchoring/ga_rpn_x101_64x4d_fpn_1x_coco.py
...configs/guided_anchoring/ga_rpn_x101_64x4d_fpn_1x_coco.py
+13
-0
openmmlab_test/mmdetection-speed_xinpian/configs/guided_anchoring/metafile.yml
...ction-speed_xinpian/configs/guided_anchoring/metafile.yml
+125
-0
openmmlab_test/mmdetection-speed_xinpian/configs/hrnet/README.md
...ab_test/mmdetection-speed_xinpian/configs/hrnet/README.md
+88
-0
openmmlab_test/mmdetection-speed_xinpian/configs/hrnet/cascade_mask_rcnn_hrnetv2p_w18_20e_coco.py
.../configs/hrnet/cascade_mask_rcnn_hrnetv2p_w18_20e_coco.py
+10
-0
openmmlab_test/mmdetection-speed_xinpian/configs/hrnet/cascade_mask_rcnn_hrnetv2p_w32_20e_coco.py
.../configs/hrnet/cascade_mask_rcnn_hrnetv2p_w32_20e_coco.py
+39
-0
openmmlab_test/mmdetection-speed_xinpian/configs/hrnet/cascade_mask_rcnn_hrnetv2p_w40_20e_coco.py
.../configs/hrnet/cascade_mask_rcnn_hrnetv2p_w40_20e_coco.py
+11
-0
openmmlab_test/mmdetection-speed_xinpian/configs/hrnet/cascade_rcnn_hrnetv2p_w18_20e_coco.py
...npian/configs/hrnet/cascade_rcnn_hrnetv2p_w18_20e_coco.py
+10
-0
openmmlab_test/mmdetection-speed_xinpian/configs/hrnet/cascade_rcnn_hrnetv2p_w32_20e_coco.py
...npian/configs/hrnet/cascade_rcnn_hrnetv2p_w32_20e_coco.py
+39
-0
openmmlab_test/mmdetection-speed_xinpian/configs/hrnet/cascade_rcnn_hrnetv2p_w40_20e_coco.py
...npian/configs/hrnet/cascade_rcnn_hrnetv2p_w40_20e_coco.py
+11
-0
openmmlab_test/mmdetection-speed_xinpian/configs/hrnet/faster_rcnn_hrnetv2p_w18_1x_coco.py
...xinpian/configs/hrnet/faster_rcnn_hrnetv2p_w18_1x_coco.py
+10
-0
openmmlab_test/mmdetection-speed_xinpian/configs/hrnet/faster_rcnn_hrnetv2p_w18_2x_coco.py
...xinpian/configs/hrnet/faster_rcnn_hrnetv2p_w18_2x_coco.py
+5
-0
openmmlab_test/mmdetection-speed_xinpian/configs/hrnet/faster_rcnn_hrnetv2p_w32_1x_coco.py
...xinpian/configs/hrnet/faster_rcnn_hrnetv2p_w32_1x_coco.py
+36
-0
No files found.
Too many changes to show.
To preserve performance only
977 of 977+
files are displayed.
Plain diff
Email patch
openmmlab_test/mmdetection-speed_xinpian/configs/guided_anchoring/ga_retinanet_r50_caffe_fpn_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'../retinanet/retinanet_r50_caffe_fpn_1x_coco.py'
model
=
dict
(
bbox_head
=
dict
(
_delete_
=
True
,
type
=
'GARetinaHead'
,
num_classes
=
80
,
in_channels
=
256
,
stacked_convs
=
4
,
feat_channels
=
256
,
approx_anchor_generator
=
dict
(
type
=
'AnchorGenerator'
,
octave_base_scale
=
4
,
scales_per_octave
=
3
,
ratios
=
[
0.5
,
1.0
,
2.0
],
strides
=
[
8
,
16
,
32
,
64
,
128
]),
square_anchor_generator
=
dict
(
type
=
'AnchorGenerator'
,
ratios
=
[
1.0
],
scales
=
[
4
],
strides
=
[
8
,
16
,
32
,
64
,
128
]),
anchor_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[.
0
,
.
0
,
.
0
,
.
0
],
target_stds
=
[
1.0
,
1.0
,
1.0
,
1.0
]),
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[.
0
,
.
0
,
.
0
,
.
0
],
target_stds
=
[
1.0
,
1.0
,
1.0
,
1.0
]),
loc_filter_thr
=
0.01
,
loss_loc
=
dict
(
type
=
'FocalLoss'
,
use_sigmoid
=
True
,
gamma
=
2.0
,
alpha
=
0.25
,
loss_weight
=
1.0
),
loss_shape
=
dict
(
type
=
'BoundedIoULoss'
,
beta
=
0.2
,
loss_weight
=
1.0
),
loss_cls
=
dict
(
type
=
'FocalLoss'
,
use_sigmoid
=
True
,
gamma
=
2.0
,
alpha
=
0.25
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'SmoothL1Loss'
,
beta
=
0.04
,
loss_weight
=
1.0
)),
# training and testing settings
train_cfg
=
dict
(
ga_assigner
=
dict
(
type
=
'ApproxMaxIoUAssigner'
,
pos_iou_thr
=
0.5
,
neg_iou_thr
=
0.4
,
min_pos_iou
=
0.4
,
ignore_iof_thr
=-
1
),
ga_sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
256
,
pos_fraction
=
0.5
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
False
),
assigner
=
dict
(
neg_iou_thr
=
0.5
,
min_pos_iou
=
0.0
),
center_ratio
=
0.2
,
ignore_ratio
=
0.5
))
optimizer_config
=
dict
(
_delete_
=
True
,
grad_clip
=
dict
(
max_norm
=
35
,
norm_type
=
2
))
openmmlab_test/mmdetection-speed_xinpian/configs/guided_anchoring/ga_retinanet_r50_fpn_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'../retinanet/retinanet_r50_fpn_1x_coco.py'
model
=
dict
(
bbox_head
=
dict
(
_delete_
=
True
,
type
=
'GARetinaHead'
,
num_classes
=
80
,
in_channels
=
256
,
stacked_convs
=
4
,
feat_channels
=
256
,
approx_anchor_generator
=
dict
(
type
=
'AnchorGenerator'
,
octave_base_scale
=
4
,
scales_per_octave
=
3
,
ratios
=
[
0.5
,
1.0
,
2.0
],
strides
=
[
8
,
16
,
32
,
64
,
128
]),
square_anchor_generator
=
dict
(
type
=
'AnchorGenerator'
,
ratios
=
[
1.0
],
scales
=
[
4
],
strides
=
[
8
,
16
,
32
,
64
,
128
]),
anchor_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[.
0
,
.
0
,
.
0
,
.
0
],
target_stds
=
[
1.0
,
1.0
,
1.0
,
1.0
]),
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[.
0
,
.
0
,
.
0
,
.
0
],
target_stds
=
[
1.0
,
1.0
,
1.0
,
1.0
]),
loc_filter_thr
=
0.01
,
loss_loc
=
dict
(
type
=
'FocalLoss'
,
use_sigmoid
=
True
,
gamma
=
2.0
,
alpha
=
0.25
,
loss_weight
=
1.0
),
loss_shape
=
dict
(
type
=
'BoundedIoULoss'
,
beta
=
0.2
,
loss_weight
=
1.0
),
loss_cls
=
dict
(
type
=
'FocalLoss'
,
use_sigmoid
=
True
,
gamma
=
2.0
,
alpha
=
0.25
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'SmoothL1Loss'
,
beta
=
0.04
,
loss_weight
=
1.0
)),
# training and testing settings
train_cfg
=
dict
(
ga_assigner
=
dict
(
type
=
'ApproxMaxIoUAssigner'
,
pos_iou_thr
=
0.5
,
neg_iou_thr
=
0.4
,
min_pos_iou
=
0.4
,
ignore_iof_thr
=-
1
),
ga_sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
256
,
pos_fraction
=
0.5
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
False
),
assigner
=
dict
(
neg_iou_thr
=
0.5
,
min_pos_iou
=
0.0
),
center_ratio
=
0.2
,
ignore_ratio
=
0.5
))
optimizer_config
=
dict
(
_delete_
=
True
,
grad_clip
=
dict
(
max_norm
=
35
,
norm_type
=
2
))
openmmlab_test/mmdetection-speed_xinpian/configs/guided_anchoring/ga_retinanet_x101_32x4d_fpn_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./ga_retinanet_r50_fpn_1x_coco.py'
model
=
dict
(
pretrained
=
'open-mmlab://resnext101_32x4d'
,
backbone
=
dict
(
type
=
'ResNeXt'
,
depth
=
101
,
groups
=
32
,
base_width
=
4
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
),
style
=
'pytorch'
))
openmmlab_test/mmdetection-speed_xinpian/configs/guided_anchoring/ga_retinanet_x101_64x4d_fpn_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./ga_retinanet_r50_fpn_1x_coco.py'
model
=
dict
(
pretrained
=
'open-mmlab://resnext101_64x4d'
,
backbone
=
dict
(
type
=
'ResNeXt'
,
depth
=
101
,
groups
=
64
,
base_width
=
4
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
),
style
=
'pytorch'
))
openmmlab_test/mmdetection-speed_xinpian/configs/guided_anchoring/ga_rpn_r101_caffe_fpn_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./ga_rpn_r50_caffe_fpn_1x_coco.py'
# model settings
model
=
dict
(
pretrained
=
'open-mmlab://detectron2/resnet101_caffe'
,
backbone
=
dict
(
depth
=
101
))
openmmlab_test/mmdetection-speed_xinpian/configs/guided_anchoring/ga_rpn_r50_caffe_fpn_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'../rpn/rpn_r50_caffe_fpn_1x_coco.py'
model
=
dict
(
rpn_head
=
dict
(
_delete_
=
True
,
type
=
'GARPNHead'
,
in_channels
=
256
,
feat_channels
=
256
,
approx_anchor_generator
=
dict
(
type
=
'AnchorGenerator'
,
octave_base_scale
=
8
,
scales_per_octave
=
3
,
ratios
=
[
0.5
,
1.0
,
2.0
],
strides
=
[
4
,
8
,
16
,
32
,
64
]),
square_anchor_generator
=
dict
(
type
=
'AnchorGenerator'
,
ratios
=
[
1.0
],
scales
=
[
8
],
strides
=
[
4
,
8
,
16
,
32
,
64
]),
anchor_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[.
0
,
.
0
,
.
0
,
.
0
],
target_stds
=
[
0.07
,
0.07
,
0.14
,
0.14
]),
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[.
0
,
.
0
,
.
0
,
.
0
],
target_stds
=
[
0.07
,
0.07
,
0.11
,
0.11
]),
loc_filter_thr
=
0.01
,
loss_loc
=
dict
(
type
=
'FocalLoss'
,
use_sigmoid
=
True
,
gamma
=
2.0
,
alpha
=
0.25
,
loss_weight
=
1.0
),
loss_shape
=
dict
(
type
=
'BoundedIoULoss'
,
beta
=
0.2
,
loss_weight
=
1.0
),
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
True
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'SmoothL1Loss'
,
beta
=
1.0
,
loss_weight
=
1.0
)),
# model training and testing settings
train_cfg
=
dict
(
rpn
=
dict
(
ga_assigner
=
dict
(
type
=
'ApproxMaxIoUAssigner'
,
pos_iou_thr
=
0.7
,
neg_iou_thr
=
0.3
,
min_pos_iou
=
0.3
,
ignore_iof_thr
=-
1
),
ga_sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
256
,
pos_fraction
=
0.5
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
False
),
allowed_border
=-
1
,
center_ratio
=
0.2
,
ignore_ratio
=
0.5
)),
test_cfg
=
dict
(
rpn
=
dict
(
nms_post
=
1000
)))
optimizer_config
=
dict
(
_delete_
=
True
,
grad_clip
=
dict
(
max_norm
=
35
,
norm_type
=
2
))
openmmlab_test/mmdetection-speed_xinpian/configs/guided_anchoring/ga_rpn_r50_fpn_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'../rpn/rpn_r50_fpn_1x_coco.py'
model
=
dict
(
rpn_head
=
dict
(
_delete_
=
True
,
type
=
'GARPNHead'
,
in_channels
=
256
,
feat_channels
=
256
,
approx_anchor_generator
=
dict
(
type
=
'AnchorGenerator'
,
octave_base_scale
=
8
,
scales_per_octave
=
3
,
ratios
=
[
0.5
,
1.0
,
2.0
],
strides
=
[
4
,
8
,
16
,
32
,
64
]),
square_anchor_generator
=
dict
(
type
=
'AnchorGenerator'
,
ratios
=
[
1.0
],
scales
=
[
8
],
strides
=
[
4
,
8
,
16
,
32
,
64
]),
anchor_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[.
0
,
.
0
,
.
0
,
.
0
],
target_stds
=
[
0.07
,
0.07
,
0.14
,
0.14
]),
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[.
0
,
.
0
,
.
0
,
.
0
],
target_stds
=
[
0.07
,
0.07
,
0.11
,
0.11
]),
loc_filter_thr
=
0.01
,
loss_loc
=
dict
(
type
=
'FocalLoss'
,
use_sigmoid
=
True
,
gamma
=
2.0
,
alpha
=
0.25
,
loss_weight
=
1.0
),
loss_shape
=
dict
(
type
=
'BoundedIoULoss'
,
beta
=
0.2
,
loss_weight
=
1.0
),
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
True
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'SmoothL1Loss'
,
beta
=
1.0
,
loss_weight
=
1.0
)),
# model training and testing settings
train_cfg
=
dict
(
rpn
=
dict
(
ga_assigner
=
dict
(
type
=
'ApproxMaxIoUAssigner'
,
pos_iou_thr
=
0.7
,
neg_iou_thr
=
0.3
,
min_pos_iou
=
0.3
,
ignore_iof_thr
=-
1
),
ga_sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
256
,
pos_fraction
=
0.5
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
False
),
allowed_border
=-
1
,
center_ratio
=
0.2
,
ignore_ratio
=
0.5
)),
test_cfg
=
dict
(
rpn
=
dict
(
nms_post
=
1000
)))
optimizer_config
=
dict
(
_delete_
=
True
,
grad_clip
=
dict
(
max_norm
=
35
,
norm_type
=
2
))
openmmlab_test/mmdetection-speed_xinpian/configs/guided_anchoring/ga_rpn_x101_32x4d_fpn_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./ga_rpn_r50_fpn_1x_coco.py'
model
=
dict
(
pretrained
=
'open-mmlab://resnext101_32x4d'
,
backbone
=
dict
(
type
=
'ResNeXt'
,
depth
=
101
,
groups
=
32
,
base_width
=
4
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
),
style
=
'pytorch'
))
openmmlab_test/mmdetection-speed_xinpian/configs/guided_anchoring/ga_rpn_x101_64x4d_fpn_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./ga_rpn_r50_fpn_1x_coco.py'
model
=
dict
(
pretrained
=
'open-mmlab://resnext101_64x4d'
,
backbone
=
dict
(
type
=
'ResNeXt'
,
depth
=
101
,
groups
=
64
,
base_width
=
4
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
),
style
=
'pytorch'
))
openmmlab_test/mmdetection-speed_xinpian/configs/guided_anchoring/metafile.yml
0 → 100644
View file @
85529f35
Collections
:
-
Name
:
Guided Anchoring
Metadata
:
Training Data
:
COCO
Training Techniques
:
-
SGD with Momentum
-
Weight Decay
Training Resources
:
8x NVIDIA V100 GPUs
Architecture
:
-
FPN
-
Guided Anchoring
-
ResNet
Paper
:
https://arxiv.org/abs/1901.03278
README
:
configs/guided_anchoring/README.md
Models
:
-
Name
:
ga_faster_r50_caffe_fpn_1x_coco
In Collection
:
Guided Anchoring
Config
:
configs/guided_anchoring/ga_faster_r50_caffe_fpn_1x_coco.py
Metadata
:
Training Memory (GB)
:
5.5
Epochs
:
12
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
39.6
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_faster_r50_caffe_fpn_1x_coco/ga_faster_r50_caffe_fpn_1x_coco_20200702_000718-a11ccfe6.pth
-
Name
:
ga_faster_r101_caffe_fpn_1x_coco
In Collection
:
Guided Anchoring
Config
:
configs/guided_anchoring/ga_faster_r101_caffe_fpn_1x_coco.py
Metadata
:
Training Memory (GB)
:
7.5
Epochs
:
12
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
41.5
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_faster_r101_caffe_fpn_1x_coco/ga_faster_r101_caffe_fpn_1x_coco_bbox_mAP-0.415_20200505_115528-fb82e499.pth
-
Name
:
ga_faster_x101_32x4d_fpn_1x_coco
In Collection
:
Guided Anchoring
Config
:
configs/guided_anchoring/ga_faster_x101_32x4d_fpn_1x_coco.py
Metadata
:
Training Memory (GB)
:
8.7
inference time (s/im)
:
0.10309
Epochs
:
12
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
43.0
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_faster_x101_32x4d_fpn_1x_coco/ga_faster_x101_32x4d_fpn_1x_coco_20200215-1ded9da3.pth
-
Name
:
ga_faster_x101_64x4d_fpn_1x_coco
In Collection
:
Guided Anchoring
Config
:
configs/guided_anchoring/ga_faster_x101_64x4d_fpn_1x_coco.py
Metadata
:
Training Memory (GB)
:
11.8
inference time (s/im)
:
0.13699
Epochs
:
12
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
43.9
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_faster_x101_64x4d_fpn_1x_coco/ga_faster_x101_64x4d_fpn_1x_coco_20200215-0fa7bde7.pth
-
Name
:
ga_retinanet_r50_caffe_fpn_1x_coco
In Collection
:
Guided Anchoring
Config
:
configs/guided_anchoring/ga_retinanet_r50_caffe_fpn_1x_coco.py
Metadata
:
Training Memory (GB)
:
3.5
inference time (s/im)
:
0.05952
Epochs
:
12
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
36.9
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_retinanet_r50_caffe_fpn_1x_coco/ga_retinanet_r50_caffe_fpn_1x_coco_20201020-39581c6f.pth
-
Name
:
ga_retinanet_r101_caffe_fpn_1x_coco
In Collection
:
Guided Anchoring
Config
:
configs/guided_anchoring/ga_retinanet_r101_caffe_fpn_1x_coco.py
Metadata
:
Training Memory (GB)
:
5.5
inference time (s/im)
:
0.07752
Epochs
:
12
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
39.0
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_retinanet_r101_caffe_fpn_1x_coco/ga_retinanet_r101_caffe_fpn_1x_coco_20200531-6266453c.pth
-
Name
:
ga_retinanet_x101_32x4d_fpn_1x_coco
In Collection
:
Guided Anchoring
Config
:
configs/guided_anchoring/ga_retinanet_x101_32x4d_fpn_1x_coco.py
Metadata
:
Training Memory (GB)
:
6.9
inference time (s/im)
:
0.09434
Epochs
:
12
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
40.5
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_retinanet_x101_32x4d_fpn_1x_coco/ga_retinanet_x101_32x4d_fpn_1x_coco_20200219-40c56caa.pth
-
Name
:
ga_retinanet_x101_64x4d_fpn_1x_coco
In Collection
:
Guided Anchoring
Config
:
configs/guided_anchoring/ga_retinanet_x101_64x4d_fpn_1x_coco.py
Metadata
:
Training Memory (GB)
:
9.9
inference time (s/im)
:
0.12987
Epochs
:
12
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
41.3
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/guided_anchoring/ga_retinanet_x101_64x4d_fpn_1x_coco/ga_retinanet_x101_64x4d_fpn_1x_coco_20200226-ef9f7f1f.pth
openmmlab_test/mmdetection-speed_xinpian/configs/hrnet/README.md
0 → 100644
View file @
85529f35
# High-resolution networks (HRNets) for object detection
## Introduction
<!-- [ALGORITHM] -->
```
latex
@inproceedings
{
SunXLW19,
title=
{
Deep High-Resolution Representation Learning for Human Pose Estimation
}
,
author=
{
Ke Sun and Bin Xiao and Dong Liu and Jingdong Wang
}
,
booktitle=
{
CVPR
}
,
year=
{
2019
}
}
@article
{
SunZJCXLMWLW19,
title=
{
High-Resolution Representations for Labeling Pixels and Regions
}
,
author=
{
Ke Sun and Yang Zhao and Borui Jiang and Tianheng Cheng and Bin Xiao
and Dong Liu and Yadong Mu and Xinggang Wang and Wenyu Liu and Jingdong Wang
}
,
journal =
{
CoRR
}
,
volume =
{
abs/1904.04514
}
,
year=
{
2019
}
}
```
## Results and Models
### Faster R-CNN
| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
| :-------------: | :-----: | :-----: | :------: | :-------------:|:------:| :------:| :--------:|
| HRNetV2p-W18 | pytorch | 1x | 6.6 | 13.4 | 36.9 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/faster_rcnn_hrnetv2p_w18_1x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w18_1x_coco/faster_rcnn_hrnetv2p_w18_1x_coco_20200130-56651a6d.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w18_1x_coco/faster_rcnn_hrnetv2p_w18_1x_coco_20200130_211246.log.json
)
|
| HRNetV2p-W18 | pytorch | 2x | 6.6 | | 38.9 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/faster_rcnn_hrnetv2p_w18_2x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w18_2x_coco/faster_rcnn_hrnetv2p_w18_2x_coco_20200702_085731-a4ec0611.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w18_2x_coco/faster_rcnn_hrnetv2p_w18_2x_coco_20200702_085731.log.json
)
|
| HRNetV2p-W32 | pytorch | 1x | 9.0 | 12.4 | 40.2 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/faster_rcnn_hrnetv2p_w32_1x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w32_1x_coco/faster_rcnn_hrnetv2p_w32_1x_coco_20200130-6e286425.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w32_1x_coco/faster_rcnn_hrnetv2p_w32_1x_coco_20200130_204442.log.json
)
|
| HRNetV2p-W32 | pytorch | 2x | 9.0 | | 41.4 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/faster_rcnn_hrnetv2p_w32_2x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w32_2x_coco/faster_rcnn_hrnetv2p_w32_2x_coco_20200529_015927-976a9c15.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w32_2x_coco/faster_rcnn_hrnetv2p_w32_2x_coco_20200529_015927.log.json
)
|
| HRNetV2p-W40 | pytorch | 1x | 10.4 | 10.5 | 41.2 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/faster_rcnn_hrnetv2p_w40_1x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w40_1x_coco/faster_rcnn_hrnetv2p_w40_1x_coco_20200210-95c1f5ce.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w40_1x_coco/faster_rcnn_hrnetv2p_w40_1x_coco_20200210_125315.log.json
)
|
| HRNetV2p-W40 | pytorch | 2x | 10.4 | | 42.1 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/faster_rcnn_hrnetv2p_w40_2x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w40_2x_coco/faster_rcnn_hrnetv2p_w40_2x_coco_20200512_161033-0f236ef4.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w40_2x_coco/faster_rcnn_hrnetv2p_w40_2x_coco_20200512_161033.log.json
)
|
### Mask R-CNN
| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
| :-------------: | :-----: | :-----: | :------: | :-------------:|:------:| :------:|:------:|:--------:|
| HRNetV2p-W18 | pytorch | 1x | 7.0 | 11.7 | 37.7 | 34.2 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/mask_rcnn_hrnetv2p_w18_1x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w18_1x_coco/mask_rcnn_hrnetv2p_w18_1x_coco_20200205-1c3d78ed.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w18_1x_coco/mask_rcnn_hrnetv2p_w18_1x_coco_20200205_232523.log.json
)
|
| HRNetV2p-W18 | pytorch | 2x | 7.0 | - | 39.8 | 36.0 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/mask_rcnn_hrnetv2p_w18_2x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w18_2x_coco/mask_rcnn_hrnetv2p_w18_2x_coco_20200212-b3c825b1.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w18_2x_coco/mask_rcnn_hrnetv2p_w18_2x_coco_20200212_134222.log.json
)
|
| HRNetV2p-W32 | pytorch | 1x | 9.4 | 11.3 | 41.2 | 37.1 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/mask_rcnn_hrnetv2p_w32_1x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w32_1x_coco/mask_rcnn_hrnetv2p_w32_1x_coco_20200207-b29f616e.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w32_1x_coco/mask_rcnn_hrnetv2p_w32_1x_coco_20200207_055017.log.json
)
|
| HRNetV2p-W32 | pytorch | 2x | 9.4 | - | 42.5 | 37.8 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/mask_rcnn_hrnetv2p_w32_2x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w32_2x_coco/mask_rcnn_hrnetv2p_w32_2x_coco_20200213-45b75b4d.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w32_2x_coco/mask_rcnn_hrnetv2p_w32_2x_coco_20200213_150518.log.json
)
|
| HRNetV2p-W40 | pytorch | 1x | 10.9 | | 42.1 | 37.5 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/mask_rcnn_hrnetv2p_w40_1x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w40_1x_coco/mask_rcnn_hrnetv2p_w40_1x_coco_20200511_015646-66738b35.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w40_1x_coco/mask_rcnn_hrnetv2p_w40_1x_coco_20200511_015646.log.json
)
|
| HRNetV2p-W40 | pytorch | 2x | 10.9 | | 42.8 | 38.2 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/mask_rcnn_hrnetv2p_w40_2x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w40_2x_coco/mask_rcnn_hrnetv2p_w40_2x_coco_20200512_163732-aed5e4ab.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w40_2x_coco/mask_rcnn_hrnetv2p_w40_2x_coco_20200512_163732.log.json
)
|
### Cascade R-CNN
| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
| :-------------: | :-----: | :-----: | :------: | :-------------:|:------:| :------: | :--------: |
| HRNetV2p-W18 | pytorch | 20e | 7.0 | 11.0 | 41.2 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/cascade_rcnn_hrnetv2p_w18_20e_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_rcnn_hrnetv2p_w18_20e_coco/cascade_rcnn_hrnetv2p_w18_20e_coco_20200210-434be9d7.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_rcnn_hrnetv2p_w18_20e_coco/cascade_rcnn_hrnetv2p_w18_20e_coco_20200210_105632.log.json
)
|
| HRNetV2p-W32 | pytorch | 20e | 9.4 | 11.0 | 43.3 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/cascade_rcnn_hrnetv2p_w32_20e_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_rcnn_hrnetv2p_w32_20e_coco/cascade_rcnn_hrnetv2p_w32_20e_coco_20200208-928455a4.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_rcnn_hrnetv2p_w32_20e_coco/cascade_rcnn_hrnetv2p_w32_20e_coco_20200208_160511.log.json
)
|
| HRNetV2p-W40 | pytorch | 20e | 10.8 | | 43.8 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/cascade_rcnn_hrnetv2p_w40_20e_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_rcnn_hrnetv2p_w40_20e_coco/cascade_rcnn_hrnetv2p_w40_20e_coco_20200512_161112-75e47b04.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_rcnn_hrnetv2p_w40_20e_coco/cascade_rcnn_hrnetv2p_w40_20e_coco_20200512_161112.log.json
)
|
### Cascade Mask R-CNN
| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
| :-------------: | :-----: | :-----: | :------: | :-------------:|:------:| :------:|:------:|:--------:|
| HRNetV2p-W18 | pytorch | 20e | 8.5 | 8.5 |41.6 |36.4 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/cascade_mask_rcnn_hrnetv2p_w18_20e_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_mask_rcnn_hrnetv2p_w18_20e_coco/cascade_mask_rcnn_hrnetv2p_w18_20e_coco_20200210-b543cd2b.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_mask_rcnn_hrnetv2p_w18_20e_coco/cascade_mask_rcnn_hrnetv2p_w18_20e_coco_20200210_093149.log.json
)
|
| HRNetV2p-W32 | pytorch | 20e | | 8.3 |44.3 |38.6 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/cascade_mask_rcnn_hrnetv2p_w32_20e_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_mask_rcnn_hrnetv2p_w32_20e_coco/cascade_mask_rcnn_hrnetv2p_w32_20e_coco_20200512_154043-39d9cf7b.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_mask_rcnn_hrnetv2p_w32_20e_coco/cascade_mask_rcnn_hrnetv2p_w32_20e_coco_20200512_154043.log.json
)
|
| HRNetV2p-W40 | pytorch | 20e | 12.5 | |45.1 |39.3 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/cascade_mask_rcnn_hrnetv2p_w40_20e_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_mask_rcnn_hrnetv2p_w40_20e_coco/cascade_mask_rcnn_hrnetv2p_w40_20e_coco_20200527_204922-969c4610.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_mask_rcnn_hrnetv2p_w40_20e_coco/cascade_mask_rcnn_hrnetv2p_w40_20e_coco_20200527_204922.log.json
)
|
### Hybrid Task Cascade (HTC)
| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
| :-------------: | :-----: | :-----: | :------: | :-------------:|:------:| :------:|:------:|:--------:|
| HRNetV2p-W18 | pytorch | 20e | 10.8 | 4.7 | 42.8 | 37.9 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/htc_hrnetv2p_w18_20e_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/htc_hrnetv2p_w18_20e_coco/htc_hrnetv2p_w18_20e_coco_20200210-b266988c.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/htc_hrnetv2p_w18_20e_coco/htc_hrnetv2p_w18_20e_coco_20200210_182735.log.json
)
|
| HRNetV2p-W32 | pytorch | 20e | 13.1 | 4.9 | 45.4 | 39.9 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/htc_hrnetv2p_w32_20e_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/htc_hrnetv2p_w32_20e_coco/htc_hrnetv2p_w32_20e_coco_20200207-7639fa12.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/htc_hrnetv2p_w32_20e_coco/htc_hrnetv2p_w32_20e_coco_20200207_193153.log.json
)
|
| HRNetV2p-W40 | pytorch | 20e | 14.6 | | 46.4 | 40.8 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/htc_hrnetv2p_w40_20e_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/htc_hrnetv2p_w40_20e_coco/htc_hrnetv2p_w40_20e_coco_20200529_183411-417c4d5b.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/htc_hrnetv2p_w40_20e_coco/htc_hrnetv2p_w40_20e_coco_20200529_183411.log.json
)
|
### FCOS
| Backbone | Style | GN | MS train | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
|:---------:|:-------:|:-------:|:--------:|:-------:|:------:|:------:|:------:|:------:|:--------:|
|HRNetV2p-W18| pytorch | Y | N | 1x | 13.0 | 12.9 | 35.3 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/fcos_hrnetv2p_w18_gn-head_4x4_1x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w18_gn-head_4x4_1x_coco/fcos_hrnetv2p_w18_gn-head_4x4_1x_coco_20201212_100710-4ad151de.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w18_gn-head_4x4_1x_coco/fcos_hrnetv2p_w18_gn-head_4x4_1x_coco_20201212_100710.log.json
)
|
|HRNetV2p-W18| pytorch | Y | N | 2x | 13.0 | - | 38.2 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/fcos_hrnetv2p_w18_gn-head_4x4_2x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w18_gn-head_4x4_2x_coco/fcos_hrnetv2p_w18_gn-head_4x4_2x_coco_20201212_101110-5c575fa5.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w18_gn-head_4x4_2x_coco/fcos_hrnetv2p_w18_gn-head_4x4_2x_coco_20201212_101110.log.json
)
|
|HRNetV2p-W32| pytorch | Y | N | 1x | 17.5 | 12.9 | 39.5 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/fcos_hrnetv2p_w32_gn-head_4x4_1x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w32_gn-head_4x4_1x_coco/fcos_hrnetv2p_w32_gn-head_4x4_1x_coco_20201211_134730-cb8055c0.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w32_gn-head_4x4_1x_coco/fcos_hrnetv2p_w32_gn-head_4x4_1x_coco_20201211_134730.log.json
)
|
|HRNetV2p-W32| pytorch | Y | N | 2x | 17.5 | - | 40.8 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/fcos_hrnetv2p_w32_gn-head_4x4_2x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w32_gn-head_4x4_2x_coco/fcos_hrnetv2p_w32_gn-head_4x4_2x_coco_20201212_112133-77b6b9bb.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w32_gn-head_4x4_2x_coco/fcos_hrnetv2p_w32_gn-head_4x4_2x_coco_20201212_112133.log.json
)
|
|HRNetV2p-W18| pytorch | Y | Y | 2x | 13.0 | 12.9 | 38.3 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/fcos_hrnetv2p_w18_gn-head_mstrain_640-800_4x4_2x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w18_gn-head_mstrain_640-800_4x4_2x_coco/fcos_hrnetv2p_w18_gn-head_mstrain_640-800_4x4_2x_coco_20201212_111651-441e9d9f.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w18_gn-head_mstrain_640-800_4x4_2x_coco/fcos_hrnetv2p_w18_gn-head_mstrain_640-800_4x4_2x_coco_20201212_111651.log.json
)
|
|HRNetV2p-W32| pytorch | Y | Y | 2x | 17.5 | 12.4 | 41.9 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/fcos_hrnetv2p_w32_gn-head_mstrain_640-800_4x4_2x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w32_gn-head_mstrain_640-800_4x4_2x_coco/fcos_hrnetv2p_w32_gn-head_mstrain_640-800_4x4_2x_coco_20201212_090846-b6f2b49f.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w32_gn-head_mstrain_640-800_4x4_2x_coco/fcos_hrnetv2p_w32_gn-head_mstrain_640-800_4x4_2x_coco_20201212_090846.log.json
)
|
|HRNetV2p-W48| pytorch | Y | Y | 2x | 20.3 | 10.8 | 42.7 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/hrnet/fcos_hrnetv2p_w40_gn-head_mstrain_640-800_4x4_2x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w40_gn-head_mstrain_640-800_4x4_2x_coco/fcos_hrnetv2p_w40_gn-head_mstrain_640-800_4x4_2x_coco_20201212_124752-f22d2ce5.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w40_gn-head_mstrain_640-800_4x4_2x_coco/fcos_hrnetv2p_w40_gn-head_mstrain_640-800_4x4_2x_coco_20201212_124752.log.json
)
|
**Note:**
-
The
`28e`
schedule in HTC indicates decreasing the lr at 24 and 27 epochs, with a total of 28 epochs.
-
HRNetV2 ImageNet pretrained models are in
[
HRNets for Image Classification
](
https://github.com/HRNet/HRNet-Image-Classification
)
.
openmmlab_test/mmdetection-speed_xinpian/configs/hrnet/cascade_mask_rcnn_hrnetv2p_w18_20e_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./cascade_mask_rcnn_hrnetv2p_w32_20e_coco.py'
# model settings
model
=
dict
(
pretrained
=
'open-mmlab://msra/hrnetv2_w18'
,
backbone
=
dict
(
extra
=
dict
(
stage2
=
dict
(
num_channels
=
(
18
,
36
)),
stage3
=
dict
(
num_channels
=
(
18
,
36
,
72
)),
stage4
=
dict
(
num_channels
=
(
18
,
36
,
72
,
144
)))),
neck
=
dict
(
type
=
'HRFPN'
,
in_channels
=
[
18
,
36
,
72
,
144
],
out_channels
=
256
))
openmmlab_test/mmdetection-speed_xinpian/configs/hrnet/cascade_mask_rcnn_hrnetv2p_w32_20e_coco.py
0 → 100644
View file @
85529f35
_base_
=
'../cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py'
model
=
dict
(
pretrained
=
'open-mmlab://msra/hrnetv2_w32'
,
backbone
=
dict
(
_delete_
=
True
,
type
=
'HRNet'
,
extra
=
dict
(
stage1
=
dict
(
num_modules
=
1
,
num_branches
=
1
,
block
=
'BOTTLENECK'
,
num_blocks
=
(
4
,
),
num_channels
=
(
64
,
)),
stage2
=
dict
(
num_modules
=
1
,
num_branches
=
2
,
block
=
'BASIC'
,
num_blocks
=
(
4
,
4
),
num_channels
=
(
32
,
64
)),
stage3
=
dict
(
num_modules
=
4
,
num_branches
=
3
,
block
=
'BASIC'
,
num_blocks
=
(
4
,
4
,
4
),
num_channels
=
(
32
,
64
,
128
)),
stage4
=
dict
(
num_modules
=
3
,
num_branches
=
4
,
block
=
'BASIC'
,
num_blocks
=
(
4
,
4
,
4
,
4
),
num_channels
=
(
32
,
64
,
128
,
256
)))),
neck
=
dict
(
_delete_
=
True
,
type
=
'HRFPN'
,
in_channels
=
[
32
,
64
,
128
,
256
],
out_channels
=
256
))
# learning policy
lr_config
=
dict
(
step
=
[
16
,
19
])
runner
=
dict
(
type
=
'EpochBasedRunner'
,
max_epochs
=
20
)
openmmlab_test/mmdetection-speed_xinpian/configs/hrnet/cascade_mask_rcnn_hrnetv2p_w40_20e_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./cascade_mask_rcnn_hrnetv2p_w32_20e_coco.py'
# model settings
model
=
dict
(
pretrained
=
'open-mmlab://msra/hrnetv2_w40'
,
backbone
=
dict
(
type
=
'HRNet'
,
extra
=
dict
(
stage2
=
dict
(
num_channels
=
(
40
,
80
)),
stage3
=
dict
(
num_channels
=
(
40
,
80
,
160
)),
stage4
=
dict
(
num_channels
=
(
40
,
80
,
160
,
320
)))),
neck
=
dict
(
type
=
'HRFPN'
,
in_channels
=
[
40
,
80
,
160
,
320
],
out_channels
=
256
))
openmmlab_test/mmdetection-speed_xinpian/configs/hrnet/cascade_rcnn_hrnetv2p_w18_20e_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./cascade_rcnn_hrnetv2p_w32_20e_coco.py'
# model settings
model
=
dict
(
pretrained
=
'open-mmlab://msra/hrnetv2_w18'
,
backbone
=
dict
(
extra
=
dict
(
stage2
=
dict
(
num_channels
=
(
18
,
36
)),
stage3
=
dict
(
num_channels
=
(
18
,
36
,
72
)),
stage4
=
dict
(
num_channels
=
(
18
,
36
,
72
,
144
)))),
neck
=
dict
(
type
=
'HRFPN'
,
in_channels
=
[
18
,
36
,
72
,
144
],
out_channels
=
256
))
openmmlab_test/mmdetection-speed_xinpian/configs/hrnet/cascade_rcnn_hrnetv2p_w32_20e_coco.py
0 → 100644
View file @
85529f35
_base_
=
'../cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.py'
model
=
dict
(
pretrained
=
'open-mmlab://msra/hrnetv2_w32'
,
backbone
=
dict
(
_delete_
=
True
,
type
=
'HRNet'
,
extra
=
dict
(
stage1
=
dict
(
num_modules
=
1
,
num_branches
=
1
,
block
=
'BOTTLENECK'
,
num_blocks
=
(
4
,
),
num_channels
=
(
64
,
)),
stage2
=
dict
(
num_modules
=
1
,
num_branches
=
2
,
block
=
'BASIC'
,
num_blocks
=
(
4
,
4
),
num_channels
=
(
32
,
64
)),
stage3
=
dict
(
num_modules
=
4
,
num_branches
=
3
,
block
=
'BASIC'
,
num_blocks
=
(
4
,
4
,
4
),
num_channels
=
(
32
,
64
,
128
)),
stage4
=
dict
(
num_modules
=
3
,
num_branches
=
4
,
block
=
'BASIC'
,
num_blocks
=
(
4
,
4
,
4
,
4
),
num_channels
=
(
32
,
64
,
128
,
256
)))),
neck
=
dict
(
_delete_
=
True
,
type
=
'HRFPN'
,
in_channels
=
[
32
,
64
,
128
,
256
],
out_channels
=
256
))
# learning policy
lr_config
=
dict
(
step
=
[
16
,
19
])
runner
=
dict
(
type
=
'EpochBasedRunner'
,
max_epochs
=
20
)
openmmlab_test/mmdetection-speed_xinpian/configs/hrnet/cascade_rcnn_hrnetv2p_w40_20e_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./cascade_rcnn_hrnetv2p_w32_20e_coco.py'
# model settings
model
=
dict
(
pretrained
=
'open-mmlab://msra/hrnetv2_w40'
,
backbone
=
dict
(
type
=
'HRNet'
,
extra
=
dict
(
stage2
=
dict
(
num_channels
=
(
40
,
80
)),
stage3
=
dict
(
num_channels
=
(
40
,
80
,
160
)),
stage4
=
dict
(
num_channels
=
(
40
,
80
,
160
,
320
)))),
neck
=
dict
(
type
=
'HRFPN'
,
in_channels
=
[
40
,
80
,
160
,
320
],
out_channels
=
256
))
openmmlab_test/mmdetection-speed_xinpian/configs/hrnet/faster_rcnn_hrnetv2p_w18_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./faster_rcnn_hrnetv2p_w32_1x_coco.py'
# model settings
model
=
dict
(
pretrained
=
'open-mmlab://msra/hrnetv2_w18'
,
backbone
=
dict
(
extra
=
dict
(
stage2
=
dict
(
num_channels
=
(
18
,
36
)),
stage3
=
dict
(
num_channels
=
(
18
,
36
,
72
)),
stage4
=
dict
(
num_channels
=
(
18
,
36
,
72
,
144
)))),
neck
=
dict
(
type
=
'HRFPN'
,
in_channels
=
[
18
,
36
,
72
,
144
],
out_channels
=
256
))
openmmlab_test/mmdetection-speed_xinpian/configs/hrnet/faster_rcnn_hrnetv2p_w18_2x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./faster_rcnn_hrnetv2p_w18_1x_coco.py'
# learning policy
lr_config
=
dict
(
step
=
[
16
,
22
])
runner
=
dict
(
type
=
'EpochBasedRunner'
,
max_epochs
=
24
)
openmmlab_test/mmdetection-speed_xinpian/configs/hrnet/faster_rcnn_hrnetv2p_w32_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
model
=
dict
(
pretrained
=
'open-mmlab://msra/hrnetv2_w32'
,
backbone
=
dict
(
_delete_
=
True
,
type
=
'HRNet'
,
extra
=
dict
(
stage1
=
dict
(
num_modules
=
1
,
num_branches
=
1
,
block
=
'BOTTLENECK'
,
num_blocks
=
(
4
,
),
num_channels
=
(
64
,
)),
stage2
=
dict
(
num_modules
=
1
,
num_branches
=
2
,
block
=
'BASIC'
,
num_blocks
=
(
4
,
4
),
num_channels
=
(
32
,
64
)),
stage3
=
dict
(
num_modules
=
4
,
num_branches
=
3
,
block
=
'BASIC'
,
num_blocks
=
(
4
,
4
,
4
),
num_channels
=
(
32
,
64
,
128
)),
stage4
=
dict
(
num_modules
=
3
,
num_branches
=
4
,
block
=
'BASIC'
,
num_blocks
=
(
4
,
4
,
4
,
4
),
num_channels
=
(
32
,
64
,
128
,
256
)))),
neck
=
dict
(
_delete_
=
True
,
type
=
'HRFPN'
,
in_channels
=
[
32
,
64
,
128
,
256
],
out_channels
=
256
))
Prev
1
…
34
35
36
37
38
39
40
41
42
…
49
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment