Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
dcuai
dlexamples
Commits
85529f35
Commit
85529f35
authored
Jul 30, 2022
by
unknown
Browse files
添加openmmlab测试用例
parent
b21b0c01
Changes
977
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
557 additions
and
0 deletions
+557
-0
openmmlab_test/mmdetection-speed_xinpian/configs/gn+ws/mask_rcnn_r101_fpn_gn_ws-all_20_23_24e_coco.py
...figs/gn+ws/mask_rcnn_r101_fpn_gn_ws-all_20_23_24e_coco.py
+4
-0
openmmlab_test/mmdetection-speed_xinpian/configs/gn+ws/mask_rcnn_r101_fpn_gn_ws-all_2x_coco.py
...ian/configs/gn+ws/mask_rcnn_r101_fpn_gn_ws-all_2x_coco.py
+3
-0
openmmlab_test/mmdetection-speed_xinpian/configs/gn+ws/mask_rcnn_r50_fpn_gn_ws-all_20_23_24e_coco.py
...nfigs/gn+ws/mask_rcnn_r50_fpn_gn_ws-all_20_23_24e_coco.py
+4
-0
openmmlab_test/mmdetection-speed_xinpian/configs/gn+ws/mask_rcnn_r50_fpn_gn_ws-all_2x_coco.py
...pian/configs/gn+ws/mask_rcnn_r50_fpn_gn_ws-all_2x_coco.py
+17
-0
openmmlab_test/mmdetection-speed_xinpian/configs/gn+ws/mask_rcnn_x101_32x4d_fpn_gn_ws-all_20_23_24e_coco.py
...n+ws/mask_rcnn_x101_32x4d_fpn_gn_ws-all_20_23_24e_coco.py
+4
-0
openmmlab_test/mmdetection-speed_xinpian/configs/gn+ws/mask_rcnn_x101_32x4d_fpn_gn_ws-all_2x_coco.py
...nfigs/gn+ws/mask_rcnn_x101_32x4d_fpn_gn_ws-all_2x_coco.py
+17
-0
openmmlab_test/mmdetection-speed_xinpian/configs/gn+ws/mask_rcnn_x50_32x4d_fpn_gn_ws-all_20_23_24e_coco.py
...gn+ws/mask_rcnn_x50_32x4d_fpn_gn_ws-all_20_23_24e_coco.py
+4
-0
openmmlab_test/mmdetection-speed_xinpian/configs/gn+ws/mask_rcnn_x50_32x4d_fpn_gn_ws-all_2x_coco.py
...onfigs/gn+ws/mask_rcnn_x50_32x4d_fpn_gn_ws-all_2x_coco.py
+17
-0
openmmlab_test/mmdetection-speed_xinpian/configs/gn+ws/metafile.yml
...test/mmdetection-speed_xinpian/configs/gn+ws/metafile.yml
+210
-0
openmmlab_test/mmdetection-speed_xinpian/configs/gn/README.md
...mmlab_test/mmdetection-speed_xinpian/configs/gn/README.md
+31
-0
openmmlab_test/mmdetection-speed_xinpian/configs/gn/mask_rcnn_r101_fpn_gn-all_2x_coco.py
...d_xinpian/configs/gn/mask_rcnn_r101_fpn_gn-all_2x_coco.py
+3
-0
openmmlab_test/mmdetection-speed_xinpian/configs/gn/mask_rcnn_r101_fpn_gn-all_3x_coco.py
...d_xinpian/configs/gn/mask_rcnn_r101_fpn_gn-all_3x_coco.py
+5
-0
openmmlab_test/mmdetection-speed_xinpian/configs/gn/mask_rcnn_r50_fpn_gn-all_2x_coco.py
...ed_xinpian/configs/gn/mask_rcnn_r50_fpn_gn-all_2x_coco.py
+46
-0
openmmlab_test/mmdetection-speed_xinpian/configs/gn/mask_rcnn_r50_fpn_gn-all_3x_coco.py
...ed_xinpian/configs/gn/mask_rcnn_r50_fpn_gn-all_3x_coco.py
+5
-0
openmmlab_test/mmdetection-speed_xinpian/configs/gn/mask_rcnn_r50_fpn_gn-all_contrib_2x_coco.py
...an/configs/gn/mask_rcnn_r50_fpn_gn-all_contrib_2x_coco.py
+15
-0
openmmlab_test/mmdetection-speed_xinpian/configs/gn/mask_rcnn_r50_fpn_gn-all_contrib_3x_coco.py
...an/configs/gn/mask_rcnn_r50_fpn_gn-all_contrib_3x_coco.py
+5
-0
openmmlab_test/mmdetection-speed_xinpian/configs/gn/metafile.yml
...ab_test/mmdetection-speed_xinpian/configs/gn/metafile.yml
+118
-0
openmmlab_test/mmdetection-speed_xinpian/configs/grid_rcnn/README.md
...est/mmdetection-speed_xinpian/configs/grid_rcnn/README.md
+35
-0
openmmlab_test/mmdetection-speed_xinpian/configs/grid_rcnn/grid_rcnn_r101_fpn_gn-head_2x_coco.py
...n/configs/grid_rcnn/grid_rcnn_r101_fpn_gn-head_2x_coco.py
+3
-0
openmmlab_test/mmdetection-speed_xinpian/configs/grid_rcnn/grid_rcnn_r50_fpn_gn-head_1x_coco.py
...an/configs/grid_rcnn/grid_rcnn_r50_fpn_gn-head_1x_coco.py
+11
-0
No files found.
Too many changes to show.
To preserve performance only
977 of 977+
files are displayed.
Plain diff
Email patch
openmmlab_test/mmdetection-speed_xinpian/configs/gn+ws/mask_rcnn_r101_fpn_gn_ws-all_20_23_24e_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./mask_rcnn_r101_fpn_gn_ws-all_2x_coco.py'
# learning policy
lr_config
=
dict
(
step
=
[
20
,
23
])
runner
=
dict
(
type
=
'EpochBasedRunner'
,
max_epochs
=
24
)
openmmlab_test/mmdetection-speed_xinpian/configs/gn+ws/mask_rcnn_r101_fpn_gn_ws-all_2x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./mask_rcnn_r50_fpn_gn_ws-all_2x_coco.py'
model
=
dict
(
pretrained
=
'open-mmlab://jhu/resnet101_gn_ws'
,
backbone
=
dict
(
depth
=
101
))
openmmlab_test/mmdetection-speed_xinpian/configs/gn+ws/mask_rcnn_r50_fpn_gn_ws-all_20_23_24e_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./mask_rcnn_r50_fpn_gn_ws-all_2x_coco.py'
# learning policy
lr_config
=
dict
(
step
=
[
20
,
23
])
runner
=
dict
(
type
=
'EpochBasedRunner'
,
max_epochs
=
24
)
openmmlab_test/mmdetection-speed_xinpian/configs/gn+ws/mask_rcnn_r50_fpn_gn_ws-all_2x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
conv_cfg
=
dict
(
type
=
'ConvWS'
)
norm_cfg
=
dict
(
type
=
'GN'
,
num_groups
=
32
,
requires_grad
=
True
)
model
=
dict
(
pretrained
=
'open-mmlab://jhu/resnet50_gn_ws'
,
backbone
=
dict
(
conv_cfg
=
conv_cfg
,
norm_cfg
=
norm_cfg
),
neck
=
dict
(
conv_cfg
=
conv_cfg
,
norm_cfg
=
norm_cfg
),
roi_head
=
dict
(
bbox_head
=
dict
(
type
=
'Shared4Conv1FCBBoxHead'
,
conv_out_channels
=
256
,
conv_cfg
=
conv_cfg
,
norm_cfg
=
norm_cfg
),
mask_head
=
dict
(
conv_cfg
=
conv_cfg
,
norm_cfg
=
norm_cfg
)))
# learning policy
lr_config
=
dict
(
step
=
[
16
,
22
])
runner
=
dict
(
type
=
'EpochBasedRunner'
,
max_epochs
=
24
)
openmmlab_test/mmdetection-speed_xinpian/configs/gn+ws/mask_rcnn_x101_32x4d_fpn_gn_ws-all_20_23_24e_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./mask_rcnn_x101_32x4d_fpn_gn_ws-all_2x_coco.py'
# learning policy
lr_config
=
dict
(
step
=
[
20
,
23
])
runner
=
dict
(
type
=
'EpochBasedRunner'
,
max_epochs
=
24
)
openmmlab_test/mmdetection-speed_xinpian/configs/gn+ws/mask_rcnn_x101_32x4d_fpn_gn_ws-all_2x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./mask_rcnn_r50_fpn_gn_ws-all_2x_coco.py'
# model settings
conv_cfg
=
dict
(
type
=
'ConvWS'
)
norm_cfg
=
dict
(
type
=
'GN'
,
num_groups
=
32
,
requires_grad
=
True
)
model
=
dict
(
pretrained
=
'open-mmlab://jhu/resnext101_32x4d_gn_ws'
,
backbone
=
dict
(
type
=
'ResNeXt'
,
depth
=
101
,
groups
=
32
,
base_width
=
4
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
style
=
'pytorch'
,
conv_cfg
=
conv_cfg
,
norm_cfg
=
norm_cfg
))
openmmlab_test/mmdetection-speed_xinpian/configs/gn+ws/mask_rcnn_x50_32x4d_fpn_gn_ws-all_20_23_24e_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./mask_rcnn_x50_32x4d_fpn_gn_ws-all_2x_coco.py'
# learning policy
lr_config
=
dict
(
step
=
[
20
,
23
])
runner
=
dict
(
type
=
'EpochBasedRunner'
,
max_epochs
=
24
)
openmmlab_test/mmdetection-speed_xinpian/configs/gn+ws/mask_rcnn_x50_32x4d_fpn_gn_ws-all_2x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./mask_rcnn_r50_fpn_gn_ws-all_2x_coco.py'
# model settings
conv_cfg
=
dict
(
type
=
'ConvWS'
)
norm_cfg
=
dict
(
type
=
'GN'
,
num_groups
=
32
,
requires_grad
=
True
)
model
=
dict
(
pretrained
=
'open-mmlab://jhu/resnext50_32x4d_gn_ws'
,
backbone
=
dict
(
type
=
'ResNeXt'
,
depth
=
50
,
groups
=
32
,
base_width
=
4
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
style
=
'pytorch'
,
conv_cfg
=
conv_cfg
,
norm_cfg
=
norm_cfg
))
openmmlab_test/mmdetection-speed_xinpian/configs/gn+ws/metafile.yml
0 → 100644
View file @
85529f35
Collections
:
-
Name
:
Weight Standardization
Metadata
:
Training Data
:
COCO
Training Techniques
:
-
SGD with Momentum
-
Weight Decay
Training Resources
:
8x NVIDIA V100 GPUs
Architecture
:
-
Group Normalization
-
Weight Standardization
Paper
:
https://arxiv.org/abs/1903.10520
README
:
configs/gn+ws/README.md
Models
:
-
Name
:
faster_rcnn_r50_fpn_gn_ws-all_1x_coco
In Collection
:
Weight Standardization
Config
:
configs/gn%2Bws/faster_rcnn_r50_fpn_gn_ws-all_1x_coco.py
Metadata
:
Training Memory (GB)
:
5.9
inference time (s/im)
:
0.08547
Epochs
:
12
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
39.7
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/faster_rcnn_r50_fpn_gn_ws-all_1x_coco/faster_rcnn_r50_fpn_gn_ws-all_1x_coco_20200130-613d9fe2.pth
-
Name
:
faster_rcnn_r101_fpn_gn_ws-all_1x_coco
In Collection
:
Weight Standardization
Config
:
configs/gn%2Bws/faster_rcnn_r101_fpn_gn_ws-all_1x_coco.py
Metadata
:
Training Memory (GB)
:
8.9
inference time (s/im)
:
0.11111
Epochs
:
12
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
41.7
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/faster_rcnn_r101_fpn_gn_ws-all_1x_coco/faster_rcnn_r101_fpn_gn_ws-all_1x_coco_20200205-a93b0d75.pth
-
Name
:
faster_rcnn_x50_32x4d_fpn_gn_ws-all_1x_coco
In Collection
:
Weight Standardization
Config
:
configs/gn%2Bws/faster_rcnn_x50_32x4d_fpn_gn_ws-all_1x_coco.py
Metadata
:
Training Memory (GB)
:
7.0
inference time (s/im)
:
0.09709
Epochs
:
12
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
40.7
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/faster_rcnn_x50_32x4d_fpn_gn_ws-all_1x_coco/faster_rcnn_x50_32x4d_fpn_gn_ws-all_1x_coco_20200203-839c5d9d.pth
-
Name
:
faster_rcnn_x101_32x4d_fpn_gn_ws-all_1x_coco
In Collection
:
Weight Standardization
Config
:
configs/gn%2Bws/faster_rcnn_x101_32x4d_fpn_gn_ws-all_1x_coco.py
Metadata
:
Training Memory (GB)
:
10.8
inference time (s/im)
:
0.13158
Epochs
:
12
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
42.1
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/faster_rcnn_x101_32x4d_fpn_gn_ws-all_1x_coco/faster_rcnn_x101_32x4d_fpn_gn_ws-all_1x_coco_20200212-27da1bc2.pth
-
Name
:
mask_rcnn_r50_fpn_gn_ws-all_2x_coco
In Collection
:
Weight Standardization
Config
:
configs/gn%2Bws/mask_rcnn_r50_fpn_gn_ws-all_2x_coco.py
Metadata
:
Training Memory (GB)
:
7.3
inference time (s/im)
:
0.09524
Epochs
:
24
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
40.6
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
36.6
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/mask_rcnn_r50_fpn_gn_ws-all_2x_coco/mask_rcnn_r50_fpn_gn_ws-all_2x_coco_20200226-16acb762.pth
-
Name
:
mask_rcnn_r101_fpn_gn_ws-all_2x_coco
In Collection
:
Weight Standardization
Config
:
configs/gn%2Bws/mask_rcnn_r101_fpn_gn_ws-all_2x_coco.py
Metadata
:
Training Memory (GB)
:
10.3
inference time (s/im)
:
0.11628
Epochs
:
24
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
42.0
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
37.7
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/mask_rcnn_r101_fpn_gn_ws-all_2x_coco/mask_rcnn_r101_fpn_gn_ws-all_2x_coco_20200212-ea357cd9.pth
-
Name
:
mask_rcnn_x50_32x4d_fpn_gn_ws-all_2x_coco
In Collection
:
Weight Standardization
Config
:
configs/gn%2Bws/mask_rcnn_x50_32x4d_fpn_gn_ws-all_2x_coco.py
Metadata
:
Training Memory (GB)
:
8.4
inference time (s/im)
:
0.10753
Epochs
:
24
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
41.1
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
37.0
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/mask_rcnn_x50_32x4d_fpn_gn_ws-all_2x_coco/mask_rcnn_x50_32x4d_fpn_gn_ws-all_2x_coco_20200216-649fdb6f.pth
-
Name
:
mask_rcnn_x101_32x4d_fpn_gn_ws-all_2x_coco
In Collection
:
Weight Standardization
Config
:
configs/gn%2Bws/mask_rcnn_x101_32x4d_fpn_gn_ws-all_2x_coco.py
Metadata
:
Training Memory (GB)
:
12.2
inference time (s/im)
:
0.14085
Epochs
:
24
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
42.1
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
37.9
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/mask_rcnn_x101_32x4d_fpn_gn_ws-all_2x_coco/mask_rcnn_x101_32x4d_fpn_gn_ws-all_2x_coco_20200319-33fb95b5.pth
-
Name
:
mask_rcnn_r50_fpn_gn_ws-all_20_23_24e_coco
In Collection
:
Weight Standardization
Config
:
configs/gn%2Bws/mask_rcnn_r50_fpn_gn_ws-all_20_23_24e_coco.py
Metadata
:
Training Memory (GB)
:
7.3
Epochs
:
24
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
41.1
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
37.1
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/mask_rcnn_r50_fpn_gn_ws-all_20_23_24e_coco/mask_rcnn_r50_fpn_gn_ws-all_20_23_24e_coco_20200213-487d1283.pth
-
Name
:
mask_rcnn_r101_fpn_gn_ws-all_20_23_24e_coco
In Collection
:
Weight Standardization
Config
:
configs/gn%2Bws/mask_rcnn_r101_fpn_gn_ws-all_20_23_24e_coco.py
Metadata
:
Training Memory (GB)
:
10.3
Epochs
:
24
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
43.1
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
38.6
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/mask_rcnn_r101_fpn_gn_ws-all_20_23_24e_coco/mask_rcnn_r101_fpn_gn_ws-all_20_23_24e_coco_20200213-57b5a50f.pth
-
Name
:
mask_rcnn_x50_32x4d_fpn_gn_ws-all_20_23_24e_coco
In Collection
:
Weight Standardization
Config
:
configs/gn%2Bws/mask_rcnn_x50_32x4d_fpn_gn_ws-all_20_23_24e_coco.py
Metadata
:
Training Memory (GB)
:
8.4
Epochs
:
24
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
42.1
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
38.0
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/mask_rcnn_x50_32x4d_fpn_gn_ws-all_20_23_24e_coco/mask_rcnn_x50_32x4d_fpn_gn_ws-all_20_23_24e_coco_20200226-969bcb2c.pth
-
Name
:
mask_rcnn_x101_32x4d_fpn_gn_ws-all_20_23_24e_coco
In Collection
:
Weight Standardization
Config
:
configs/gn%2Bws/mask_rcnn_x101_32x4d_fpn_gn_ws-all_20_23_24e_coco.py
Metadata
:
Training Memory (GB)
:
12.2
Epochs
:
24
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
42.7
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
38.5
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/mask_rcnn_x101_32x4d_fpn_gn_ws-all_20_23_24e_coco/mask_rcnn_x101_32x4d_fpn_gn_ws-all_20_23_24e_coco_20200316-e6cd35ef.pth
openmmlab_test/mmdetection-speed_xinpian/configs/gn/README.md
0 → 100644
View file @
85529f35
# Group Normalization
## Introduction
<!-- [ALGORITHM] -->
```
latex
@inproceedings
{
wu2018group,
title=
{
Group Normalization
}
,
author=
{
Wu, Yuxin and He, Kaiming
}
,
booktitle=
{
Proceedings of the European Conference on Computer Vision (ECCV)
}
,
year=
{
2018
}
}
```
## Results and Models
| Backbone | model | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
|:-------------:|:----------:|:-------:|:--------:|:--------------:|:------:|:-------:|:------:|:--------:|
| R-50-FPN (d) | Mask R-CNN | 2x | 7.1 | 11.0 | 40.2 | 36.4 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/gn/mask_rcnn_r50_fpn_gn-all_2x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r50_fpn_gn-all_2x_coco/mask_rcnn_r50_fpn_gn-all_2x_coco_20200206-8eee02a6.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r50_fpn_gn-all_2x_coco/mask_rcnn_r50_fpn_gn-all_2x_coco_20200206_050355.log.json
)
|
| R-50-FPN (d) | Mask R-CNN | 3x | 7.1 | - | 40.5 | 36.7 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/gn/mask_rcnn_r50_fpn_gn-all_3x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r50_fpn_gn-all_3x_coco/mask_rcnn_r50_fpn_gn-all_3x_coco_20200214-8b23b1e5.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r50_fpn_gn-all_3x_coco/mask_rcnn_r50_fpn_gn-all_3x_coco_20200214_063512.log.json
)
|
| R-101-FPN (d) | Mask R-CNN | 2x | 9.9 | 9.0 | 41.9 | 37.6 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/gn/mask_rcnn_r101_fpn_gn-all_2x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r101_fpn_gn-all_2x_coco/mask_rcnn_r101_fpn_gn-all_2x_coco_20200205-d96b1b50.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r101_fpn_gn-all_2x_coco/mask_rcnn_r101_fpn_gn-all_2x_coco_20200205_234402.log.json
)
|
| R-101-FPN (d) | Mask R-CNN | 3x | 9.9 | | 42.1 | 38.0 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/gn/mask_rcnn_r101_fpn_gn-all_3x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r101_fpn_gn-all_3x_coco/mask_rcnn_r101_fpn_gn-all_3x_coco_20200513_181609-0df864f4.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r101_fpn_gn-all_3x_coco/mask_rcnn_r101_fpn_gn-all_3x_coco_20200513_181609.log.json
)
|
| R-50-FPN (c) | Mask R-CNN | 2x | 7.1 | 10.9 | 40.0 | 36.1 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/gn/mask_rcnn_r50_fpn_gn-all_contrib_2x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r50_fpn_gn-all_contrib_2x_coco/mask_rcnn_r50_fpn_gn-all_contrib_2x_coco_20200207-20d3e849.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r50_fpn_gn-all_contrib_2x_coco/mask_rcnn_r50_fpn_gn-all_contrib_2x_coco_20200207_225832.log.json
)
|
| R-50-FPN (c) | Mask R-CNN | 3x | 7.1 | - | 40.1 | 36.2 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/gn/mask_rcnn_r50_fpn_gn-all_contrib_3x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r50_fpn_gn-all_contrib_3x_coco/mask_rcnn_r50_fpn_gn-all_contrib_3x_coco_20200225-542aefbc.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r50_fpn_gn-all_contrib_3x_coco/mask_rcnn_r50_fpn_gn-all_contrib_3x_coco_20200225_235135.log.json
)
|
**Notes:**
-
(d) means pretrained model converted from Detectron, and (c) means the contributed model pretrained by
[
@thangvubk
](
https://github.com/thangvubk
)
.
-
The
`3x`
schedule is epoch [28, 34, 36].
-
**Memory, Train/Inf time is outdated.**
openmmlab_test/mmdetection-speed_xinpian/configs/gn/mask_rcnn_r101_fpn_gn-all_2x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./mask_rcnn_r50_fpn_gn-all_2x_coco.py'
model
=
dict
(
pretrained
=
'open-mmlab://detectron/resnet101_gn'
,
backbone
=
dict
(
depth
=
101
))
openmmlab_test/mmdetection-speed_xinpian/configs/gn/mask_rcnn_r101_fpn_gn-all_3x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./mask_rcnn_r101_fpn_gn-all_2x_coco.py'
# learning policy
lr_config
=
dict
(
step
=
[
28
,
34
])
runner
=
dict
(
type
=
'EpochBasedRunner'
,
max_epochs
=
36
)
openmmlab_test/mmdetection-speed_xinpian/configs/gn/mask_rcnn_r50_fpn_gn-all_2x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
norm_cfg
=
dict
(
type
=
'GN'
,
num_groups
=
32
,
requires_grad
=
True
)
model
=
dict
(
pretrained
=
'open-mmlab://detectron/resnet50_gn'
,
backbone
=
dict
(
norm_cfg
=
norm_cfg
),
neck
=
dict
(
norm_cfg
=
norm_cfg
),
roi_head
=
dict
(
bbox_head
=
dict
(
type
=
'Shared4Conv1FCBBoxHead'
,
conv_out_channels
=
256
,
norm_cfg
=
norm_cfg
),
mask_head
=
dict
(
norm_cfg
=
norm_cfg
)))
img_norm_cfg
=
dict
(
mean
=
[
103.530
,
116.280
,
123.675
],
std
=
[
1.0
,
1.0
,
1.0
],
to_rgb
=
False
)
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
,
with_mask
=
True
),
dict
(
type
=
'Resize'
,
img_scale
=
(
1333
,
800
),
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
,
flip_ratio
=
0.5
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'DefaultFormatBundle'
),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_bboxes'
,
'gt_labels'
,
'gt_masks'
]),
]
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'MultiScaleFlipAug'
,
img_scale
=
(
1333
,
800
),
flip
=
False
,
transforms
=
[
dict
(
type
=
'Resize'
,
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
]),
])
]
data
=
dict
(
train
=
dict
(
pipeline
=
train_pipeline
),
val
=
dict
(
pipeline
=
test_pipeline
),
test
=
dict
(
pipeline
=
test_pipeline
))
# learning policy
lr_config
=
dict
(
step
=
[
16
,
22
])
runner
=
dict
(
type
=
'EpochBasedRunner'
,
max_epochs
=
24
)
openmmlab_test/mmdetection-speed_xinpian/configs/gn/mask_rcnn_r50_fpn_gn-all_3x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./mask_rcnn_r50_fpn_gn-all_2x_coco.py'
# learning policy
lr_config
=
dict
(
step
=
[
28
,
34
])
runner
=
dict
(
type
=
'EpochBasedRunner'
,
max_epochs
=
36
)
openmmlab_test/mmdetection-speed_xinpian/configs/gn/mask_rcnn_r50_fpn_gn-all_contrib_2x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
norm_cfg
=
dict
(
type
=
'GN'
,
num_groups
=
32
,
requires_grad
=
True
)
model
=
dict
(
pretrained
=
'open-mmlab://contrib/resnet50_gn'
,
backbone
=
dict
(
norm_cfg
=
norm_cfg
),
neck
=
dict
(
norm_cfg
=
norm_cfg
),
roi_head
=
dict
(
bbox_head
=
dict
(
type
=
'Shared4Conv1FCBBoxHead'
,
conv_out_channels
=
256
,
norm_cfg
=
norm_cfg
),
mask_head
=
dict
(
norm_cfg
=
norm_cfg
)))
# learning policy
lr_config
=
dict
(
step
=
[
16
,
22
])
runner
=
dict
(
type
=
'EpochBasedRunner'
,
max_epochs
=
24
)
openmmlab_test/mmdetection-speed_xinpian/configs/gn/mask_rcnn_r50_fpn_gn-all_contrib_3x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./mask_rcnn_r50_fpn_gn-all_contrib_2x_coco.py'
# learning policy
lr_config
=
dict
(
step
=
[
28
,
34
])
runner
=
dict
(
type
=
'EpochBasedRunner'
,
max_epochs
=
36
)
openmmlab_test/mmdetection-speed_xinpian/configs/gn/metafile.yml
0 → 100644
View file @
85529f35
Collections
:
-
Name
:
Group Normalization
Metadata
:
Training Data
:
COCO
Training Techniques
:
-
SGD with Momentum
-
Weight Decay
Training Resources
:
8x NVIDIA V100 GPUs
Architecture
:
-
Group Normalization
Paper
:
https://arxiv.org/abs/1803.08494
README
:
configs/gn/README.md
Models
:
-
Name
:
mask_rcnn_r50_fpn_gn-all_2x_coco
In Collection
:
Group Normalization
Config
:
configs/gn/mask_rcnn_r50_fpn_gn-all_2x_coco.py
Metadata
:
Training Memory (GB)
:
7.1
inference time (s/im)
:
0.09091
Epochs
:
24
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
40.2
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
36.4
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r50_fpn_gn-all_2x_coco/mask_rcnn_r50_fpn_gn-all_2x_coco_20200206-8eee02a6.pth
-
Name
:
mask_rcnn_r50_fpn_gn-all_3x_coco
In Collection
:
Group Normalization
Config
:
configs/gn/mask_rcnn_r50_fpn_gn-all_3x_coco.py
Metadata
:
Training Memory (GB)
:
7.1
Epochs
:
36
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
40.5
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
36.7
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r50_fpn_gn-all_3x_coco/mask_rcnn_r50_fpn_gn-all_3x_coco_20200214-8b23b1e5.pth
-
Name
:
mask_rcnn_r101_fpn_gn-all_2x_coco
In Collection
:
Group Normalization
Config
:
configs/gn/mask_rcnn_r101_fpn_gn-all_2x_coco.py
Metadata
:
Training Memory (GB)
:
9.9
inference time (s/im)
:
0.11111
Epochs
:
24
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
41.9
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
37.6
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r101_fpn_gn-all_2x_coco/mask_rcnn_r101_fpn_gn-all_2x_coco_20200205-d96b1b50.pth
-
Name
:
mask_rcnn_r101_fpn_gn-all_3x_coco
In Collection
:
Group Normalization
Config
:
configs/gn/mask_rcnn_r101_fpn_gn-all_3x_coco.py
Metadata
:
Training Memory (GB)
:
9.9
Epochs
:
36
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
42.1
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
38.0
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r101_fpn_gn-all_3x_coco/mask_rcnn_r101_fpn_gn-all_3x_coco_20200513_181609-0df864f4.pth
-
Name
:
mask_rcnn_r50_fpn_gn-all_contrib_2x_coco
In Collection
:
Group Normalization
Config
:
configs/gn/mask_rcnn_r50_fpn_gn-all_contrib_2x_coco.py
Metadata
:
Training Memory (GB)
:
7.1
inference time (s/im)
:
0.09174
Epochs
:
24
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
40.0
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
36.1
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r50_fpn_gn-all_contrib_2x_coco/mask_rcnn_r50_fpn_gn-all_contrib_2x_coco_20200207-20d3e849.pth
-
Name
:
mask_rcnn_r50_fpn_gn-all_contrib_3x_coco
In Collection
:
Group Normalization
Config
:
configs/gn/mask_rcnn_r50_fpn_gn-all_contrib_3x_coco.py
Metadata
:
Training Memory (GB)
:
7.1
Epochs
:
36
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
40.1
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
36.2
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r50_fpn_gn-all_contrib_3x_coco/mask_rcnn_r50_fpn_gn-all_contrib_3x_coco_20200225-542aefbc.pth
openmmlab_test/mmdetection-speed_xinpian/configs/grid_rcnn/README.md
0 → 100644
View file @
85529f35
# Grid R-CNN
## Introduction
<!-- [ALGORITHM] -->
```
latex
@inproceedings
{
lu2019grid,
title=
{
Grid r-cnn
}
,
author=
{
Lu, Xin and Li, Buyu and Yue, Yuxin and Li, Quanquan and Yan, Junjie
}
,
booktitle=
{
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
}
,
year=
{
2019
}
}
@article
{
lu2019grid,
title=
{
Grid R-CNN Plus: Faster and Better
}
,
author=
{
Lu, Xin and Li, Buyu and Yue, Yuxin and Li, Quanquan and Yan, Junjie
}
,
journal=
{
arXiv preprint arXiv:1906.05688
}
,
year=
{
2019
}
}
```
## Results and Models
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
|:-----------:|:-------:|:--------:|:--------------:|:------:|:------:|:--------:|
| R-50 | 2x | 5.1 | 15.0 | 40.4 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/grid_rcnn/grid_rcnn_r50_fpn_gn-head_2x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/grid_rcnn/grid_rcnn_r50_fpn_gn-head_2x_coco/grid_rcnn_r50_fpn_gn-head_2x_coco_20200130-6cca8223.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/grid_rcnn/grid_rcnn_r50_fpn_gn-head_2x_coco/grid_rcnn_r50_fpn_gn-head_2x_coco_20200130_221140.log.json
)
|
| R-101 | 2x | 7.0 | 12.6 | 41.5 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/grid_rcnn/grid_rcnn_r101_fpn_gn-head_2x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/grid_rcnn/grid_rcnn_r101_fpn_gn-head_2x_coco/grid_rcnn_r101_fpn_gn-head_2x_coco_20200309-d6eca030.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/grid_rcnn/grid_rcnn_r101_fpn_gn-head_2x_coco/grid_rcnn_r101_fpn_gn-head_2x_coco_20200309_164224.log.json
)
|
| X-101-32x4d | 2x | 8.3 | 10.8 | 42.9 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/grid_rcnn/grid_rcnn_x101_32x4d_fpn_gn-head_2x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/grid_rcnn/grid_rcnn_x101_32x4d_fpn_gn-head_2x_coco/grid_rcnn_x101_32x4d_fpn_gn-head_2x_coco_20200130-d8f0e3ff.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/grid_rcnn/grid_rcnn_x101_32x4d_fpn_gn-head_2x_coco/grid_rcnn_x101_32x4d_fpn_gn-head_2x_coco_20200130_215413.log.json
)
|
| X-101-64x4d | 2x | 11.3 | 7.7 | 43.0 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/grid_rcnn/grid_rcnn_x101_64x4d_fpn_gn-head_2x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/grid_rcnn/grid_rcnn_x101_64x4d_fpn_gn-head_2x_coco/grid_rcnn_x101_64x4d_fpn_gn-head_2x_coco_20200204-ec76a754.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/grid_rcnn/grid_rcnn_x101_64x4d_fpn_gn-head_2x_coco/grid_rcnn_x101_64x4d_fpn_gn-head_2x_coco_20200204_080641.log.json
)
|
**Notes:**
-
All models are trained with 8 GPUs instead of 32 GPUs in the original paper.
-
The warming up lasts for 1 epoch and
`2x`
here indicates 25 epochs.
openmmlab_test/mmdetection-speed_xinpian/configs/grid_rcnn/grid_rcnn_r101_fpn_gn-head_2x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'./grid_rcnn_r50_fpn_gn-head_2x_coco.py'
model
=
dict
(
pretrained
=
'torchvision://resnet101'
,
backbone
=
dict
(
depth
=
101
))
openmmlab_test/mmdetection-speed_xinpian/configs/grid_rcnn/grid_rcnn_r50_fpn_gn-head_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
[
'grid_rcnn_r50_fpn_gn-head_2x_coco.py'
]
# learning policy
lr_config
=
dict
(
policy
=
'step'
,
warmup
=
'linear'
,
warmup_iters
=
500
,
warmup_ratio
=
0.001
,
step
=
[
8
,
11
])
checkpoint_config
=
dict
(
interval
=
1
)
# runtime settings
runner
=
dict
(
type
=
'EpochBasedRunner'
,
max_epochs
=
12
)
Prev
1
…
32
33
34
35
36
37
38
39
40
…
49
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment