Commit 85529f35 authored by unknown's avatar unknown
Browse files

添加openmmlab测试用例

parent b21b0c01
_base_ = './mask_rcnn_r101_fpn_gn_ws-all_2x_coco.py'
# learning policy
lr_config = dict(step=[20, 23])
runner = dict(type='EpochBasedRunner', max_epochs=24)
_base_ = './mask_rcnn_r50_fpn_gn_ws-all_2x_coco.py'
model = dict(
pretrained='open-mmlab://jhu/resnet101_gn_ws', backbone=dict(depth=101))
_base_ = './mask_rcnn_r50_fpn_gn_ws-all_2x_coco.py'
# learning policy
lr_config = dict(step=[20, 23])
runner = dict(type='EpochBasedRunner', max_epochs=24)
_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
conv_cfg = dict(type='ConvWS')
norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
model = dict(
pretrained='open-mmlab://jhu/resnet50_gn_ws',
backbone=dict(conv_cfg=conv_cfg, norm_cfg=norm_cfg),
neck=dict(conv_cfg=conv_cfg, norm_cfg=norm_cfg),
roi_head=dict(
bbox_head=dict(
type='Shared4Conv1FCBBoxHead',
conv_out_channels=256,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg),
mask_head=dict(conv_cfg=conv_cfg, norm_cfg=norm_cfg)))
# learning policy
lr_config = dict(step=[16, 22])
runner = dict(type='EpochBasedRunner', max_epochs=24)
_base_ = './mask_rcnn_x101_32x4d_fpn_gn_ws-all_2x_coco.py'
# learning policy
lr_config = dict(step=[20, 23])
runner = dict(type='EpochBasedRunner', max_epochs=24)
_base_ = './mask_rcnn_r50_fpn_gn_ws-all_2x_coco.py'
# model settings
conv_cfg = dict(type='ConvWS')
norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
model = dict(
pretrained='open-mmlab://jhu/resnext101_32x4d_gn_ws',
backbone=dict(
type='ResNeXt',
depth=101,
groups=32,
base_width=4,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
style='pytorch',
conv_cfg=conv_cfg,
norm_cfg=norm_cfg))
_base_ = './mask_rcnn_x50_32x4d_fpn_gn_ws-all_2x_coco.py'
# learning policy
lr_config = dict(step=[20, 23])
runner = dict(type='EpochBasedRunner', max_epochs=24)
_base_ = './mask_rcnn_r50_fpn_gn_ws-all_2x_coco.py'
# model settings
conv_cfg = dict(type='ConvWS')
norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
model = dict(
pretrained='open-mmlab://jhu/resnext50_32x4d_gn_ws',
backbone=dict(
type='ResNeXt',
depth=50,
groups=32,
base_width=4,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
style='pytorch',
conv_cfg=conv_cfg,
norm_cfg=norm_cfg))
Collections:
- Name: Weight Standardization
Metadata:
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x NVIDIA V100 GPUs
Architecture:
- Group Normalization
- Weight Standardization
Paper: https://arxiv.org/abs/1903.10520
README: configs/gn+ws/README.md
Models:
- Name: faster_rcnn_r50_fpn_gn_ws-all_1x_coco
In Collection: Weight Standardization
Config: configs/gn%2Bws/faster_rcnn_r50_fpn_gn_ws-all_1x_coco.py
Metadata:
Training Memory (GB): 5.9
inference time (s/im): 0.08547
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 39.7
Weights: https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/faster_rcnn_r50_fpn_gn_ws-all_1x_coco/faster_rcnn_r50_fpn_gn_ws-all_1x_coco_20200130-613d9fe2.pth
- Name: faster_rcnn_r101_fpn_gn_ws-all_1x_coco
In Collection: Weight Standardization
Config: configs/gn%2Bws/faster_rcnn_r101_fpn_gn_ws-all_1x_coco.py
Metadata:
Training Memory (GB): 8.9
inference time (s/im): 0.11111
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 41.7
Weights: https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/faster_rcnn_r101_fpn_gn_ws-all_1x_coco/faster_rcnn_r101_fpn_gn_ws-all_1x_coco_20200205-a93b0d75.pth
- Name: faster_rcnn_x50_32x4d_fpn_gn_ws-all_1x_coco
In Collection: Weight Standardization
Config: configs/gn%2Bws/faster_rcnn_x50_32x4d_fpn_gn_ws-all_1x_coco.py
Metadata:
Training Memory (GB): 7.0
inference time (s/im): 0.09709
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 40.7
Weights: https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/faster_rcnn_x50_32x4d_fpn_gn_ws-all_1x_coco/faster_rcnn_x50_32x4d_fpn_gn_ws-all_1x_coco_20200203-839c5d9d.pth
- Name: faster_rcnn_x101_32x4d_fpn_gn_ws-all_1x_coco
In Collection: Weight Standardization
Config: configs/gn%2Bws/faster_rcnn_x101_32x4d_fpn_gn_ws-all_1x_coco.py
Metadata:
Training Memory (GB): 10.8
inference time (s/im): 0.13158
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 42.1
Weights: https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/faster_rcnn_x101_32x4d_fpn_gn_ws-all_1x_coco/faster_rcnn_x101_32x4d_fpn_gn_ws-all_1x_coco_20200212-27da1bc2.pth
- Name: mask_rcnn_r50_fpn_gn_ws-all_2x_coco
In Collection: Weight Standardization
Config: configs/gn%2Bws/mask_rcnn_r50_fpn_gn_ws-all_2x_coco.py
Metadata:
Training Memory (GB): 7.3
inference time (s/im): 0.09524
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 40.6
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 36.6
Weights: https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/mask_rcnn_r50_fpn_gn_ws-all_2x_coco/mask_rcnn_r50_fpn_gn_ws-all_2x_coco_20200226-16acb762.pth
- Name: mask_rcnn_r101_fpn_gn_ws-all_2x_coco
In Collection: Weight Standardization
Config: configs/gn%2Bws/mask_rcnn_r101_fpn_gn_ws-all_2x_coco.py
Metadata:
Training Memory (GB): 10.3
inference time (s/im): 0.11628
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 42.0
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 37.7
Weights: https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/mask_rcnn_r101_fpn_gn_ws-all_2x_coco/mask_rcnn_r101_fpn_gn_ws-all_2x_coco_20200212-ea357cd9.pth
- Name: mask_rcnn_x50_32x4d_fpn_gn_ws-all_2x_coco
In Collection: Weight Standardization
Config: configs/gn%2Bws/mask_rcnn_x50_32x4d_fpn_gn_ws-all_2x_coco.py
Metadata:
Training Memory (GB): 8.4
inference time (s/im): 0.10753
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 41.1
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 37.0
Weights: https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/mask_rcnn_x50_32x4d_fpn_gn_ws-all_2x_coco/mask_rcnn_x50_32x4d_fpn_gn_ws-all_2x_coco_20200216-649fdb6f.pth
- Name: mask_rcnn_x101_32x4d_fpn_gn_ws-all_2x_coco
In Collection: Weight Standardization
Config: configs/gn%2Bws/mask_rcnn_x101_32x4d_fpn_gn_ws-all_2x_coco.py
Metadata:
Training Memory (GB): 12.2
inference time (s/im): 0.14085
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 42.1
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 37.9
Weights: https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/mask_rcnn_x101_32x4d_fpn_gn_ws-all_2x_coco/mask_rcnn_x101_32x4d_fpn_gn_ws-all_2x_coco_20200319-33fb95b5.pth
- Name: mask_rcnn_r50_fpn_gn_ws-all_20_23_24e_coco
In Collection: Weight Standardization
Config: configs/gn%2Bws/mask_rcnn_r50_fpn_gn_ws-all_20_23_24e_coco.py
Metadata:
Training Memory (GB): 7.3
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 41.1
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 37.1
Weights: https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/mask_rcnn_r50_fpn_gn_ws-all_20_23_24e_coco/mask_rcnn_r50_fpn_gn_ws-all_20_23_24e_coco_20200213-487d1283.pth
- Name: mask_rcnn_r101_fpn_gn_ws-all_20_23_24e_coco
In Collection: Weight Standardization
Config: configs/gn%2Bws/mask_rcnn_r101_fpn_gn_ws-all_20_23_24e_coco.py
Metadata:
Training Memory (GB): 10.3
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 43.1
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 38.6
Weights: https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/mask_rcnn_r101_fpn_gn_ws-all_20_23_24e_coco/mask_rcnn_r101_fpn_gn_ws-all_20_23_24e_coco_20200213-57b5a50f.pth
- Name: mask_rcnn_x50_32x4d_fpn_gn_ws-all_20_23_24e_coco
In Collection: Weight Standardization
Config: configs/gn%2Bws/mask_rcnn_x50_32x4d_fpn_gn_ws-all_20_23_24e_coco.py
Metadata:
Training Memory (GB): 8.4
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 42.1
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 38.0
Weights: https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/mask_rcnn_x50_32x4d_fpn_gn_ws-all_20_23_24e_coco/mask_rcnn_x50_32x4d_fpn_gn_ws-all_20_23_24e_coco_20200226-969bcb2c.pth
- Name: mask_rcnn_x101_32x4d_fpn_gn_ws-all_20_23_24e_coco
In Collection: Weight Standardization
Config: configs/gn%2Bws/mask_rcnn_x101_32x4d_fpn_gn_ws-all_20_23_24e_coco.py
Metadata:
Training Memory (GB): 12.2
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 42.7
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 38.5
Weights: https://download.openmmlab.com/mmdetection/v2.0/gn%2Bws/mask_rcnn_x101_32x4d_fpn_gn_ws-all_20_23_24e_coco/mask_rcnn_x101_32x4d_fpn_gn_ws-all_20_23_24e_coco_20200316-e6cd35ef.pth
# Group Normalization
## Introduction
<!-- [ALGORITHM] -->
```latex
@inproceedings{wu2018group,
title={Group Normalization},
author={Wu, Yuxin and He, Kaiming},
booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
year={2018}
}
```
## Results and Models
| Backbone | model | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
|:-------------:|:----------:|:-------:|:--------:|:--------------:|:------:|:-------:|:------:|:--------:|
| R-50-FPN (d) | Mask R-CNN | 2x | 7.1 | 11.0 | 40.2 | 36.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gn/mask_rcnn_r50_fpn_gn-all_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r50_fpn_gn-all_2x_coco/mask_rcnn_r50_fpn_gn-all_2x_coco_20200206-8eee02a6.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r50_fpn_gn-all_2x_coco/mask_rcnn_r50_fpn_gn-all_2x_coco_20200206_050355.log.json) |
| R-50-FPN (d) | Mask R-CNN | 3x | 7.1 | - | 40.5 | 36.7 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gn/mask_rcnn_r50_fpn_gn-all_3x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r50_fpn_gn-all_3x_coco/mask_rcnn_r50_fpn_gn-all_3x_coco_20200214-8b23b1e5.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r50_fpn_gn-all_3x_coco/mask_rcnn_r50_fpn_gn-all_3x_coco_20200214_063512.log.json) |
| R-101-FPN (d) | Mask R-CNN | 2x | 9.9 | 9.0 | 41.9 | 37.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gn/mask_rcnn_r101_fpn_gn-all_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r101_fpn_gn-all_2x_coco/mask_rcnn_r101_fpn_gn-all_2x_coco_20200205-d96b1b50.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r101_fpn_gn-all_2x_coco/mask_rcnn_r101_fpn_gn-all_2x_coco_20200205_234402.log.json) |
| R-101-FPN (d) | Mask R-CNN | 3x | 9.9 | | 42.1 | 38.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gn/mask_rcnn_r101_fpn_gn-all_3x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r101_fpn_gn-all_3x_coco/mask_rcnn_r101_fpn_gn-all_3x_coco_20200513_181609-0df864f4.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r101_fpn_gn-all_3x_coco/mask_rcnn_r101_fpn_gn-all_3x_coco_20200513_181609.log.json) |
| R-50-FPN (c) | Mask R-CNN | 2x | 7.1 | 10.9 | 40.0 | 36.1 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gn/mask_rcnn_r50_fpn_gn-all_contrib_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r50_fpn_gn-all_contrib_2x_coco/mask_rcnn_r50_fpn_gn-all_contrib_2x_coco_20200207-20d3e849.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r50_fpn_gn-all_contrib_2x_coco/mask_rcnn_r50_fpn_gn-all_contrib_2x_coco_20200207_225832.log.json) |
| R-50-FPN (c) | Mask R-CNN | 3x | 7.1 | - | 40.1 | 36.2 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gn/mask_rcnn_r50_fpn_gn-all_contrib_3x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r50_fpn_gn-all_contrib_3x_coco/mask_rcnn_r50_fpn_gn-all_contrib_3x_coco_20200225-542aefbc.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r50_fpn_gn-all_contrib_3x_coco/mask_rcnn_r50_fpn_gn-all_contrib_3x_coco_20200225_235135.log.json) |
**Notes:**
- (d) means pretrained model converted from Detectron, and (c) means the contributed model pretrained by [@thangvubk](https://github.com/thangvubk).
- The `3x` schedule is epoch [28, 34, 36].
- **Memory, Train/Inf time is outdated.**
_base_ = './mask_rcnn_r50_fpn_gn-all_2x_coco.py'
model = dict(
pretrained='open-mmlab://detectron/resnet101_gn', backbone=dict(depth=101))
_base_ = './mask_rcnn_r101_fpn_gn-all_2x_coco.py'
# learning policy
lr_config = dict(step=[28, 34])
runner = dict(type='EpochBasedRunner', max_epochs=36)
_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
model = dict(
pretrained='open-mmlab://detectron/resnet50_gn',
backbone=dict(norm_cfg=norm_cfg),
neck=dict(norm_cfg=norm_cfg),
roi_head=dict(
bbox_head=dict(
type='Shared4Conv1FCBBoxHead',
conv_out_channels=256,
norm_cfg=norm_cfg),
mask_head=dict(norm_cfg=norm_cfg)))
img_norm_cfg = dict(
mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))
# learning policy
lr_config = dict(step=[16, 22])
runner = dict(type='EpochBasedRunner', max_epochs=24)
_base_ = './mask_rcnn_r50_fpn_gn-all_2x_coco.py'
# learning policy
lr_config = dict(step=[28, 34])
runner = dict(type='EpochBasedRunner', max_epochs=36)
_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
model = dict(
pretrained='open-mmlab://contrib/resnet50_gn',
backbone=dict(norm_cfg=norm_cfg),
neck=dict(norm_cfg=norm_cfg),
roi_head=dict(
bbox_head=dict(
type='Shared4Conv1FCBBoxHead',
conv_out_channels=256,
norm_cfg=norm_cfg),
mask_head=dict(norm_cfg=norm_cfg)))
# learning policy
lr_config = dict(step=[16, 22])
runner = dict(type='EpochBasedRunner', max_epochs=24)
_base_ = './mask_rcnn_r50_fpn_gn-all_contrib_2x_coco.py'
# learning policy
lr_config = dict(step=[28, 34])
runner = dict(type='EpochBasedRunner', max_epochs=36)
Collections:
- Name: Group Normalization
Metadata:
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x NVIDIA V100 GPUs
Architecture:
- Group Normalization
Paper: https://arxiv.org/abs/1803.08494
README: configs/gn/README.md
Models:
- Name: mask_rcnn_r50_fpn_gn-all_2x_coco
In Collection: Group Normalization
Config: configs/gn/mask_rcnn_r50_fpn_gn-all_2x_coco.py
Metadata:
Training Memory (GB): 7.1
inference time (s/im): 0.09091
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 40.2
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 36.4
Weights: https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r50_fpn_gn-all_2x_coco/mask_rcnn_r50_fpn_gn-all_2x_coco_20200206-8eee02a6.pth
- Name: mask_rcnn_r50_fpn_gn-all_3x_coco
In Collection: Group Normalization
Config: configs/gn/mask_rcnn_r50_fpn_gn-all_3x_coco.py
Metadata:
Training Memory (GB): 7.1
Epochs: 36
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 40.5
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 36.7
Weights: https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r50_fpn_gn-all_3x_coco/mask_rcnn_r50_fpn_gn-all_3x_coco_20200214-8b23b1e5.pth
- Name: mask_rcnn_r101_fpn_gn-all_2x_coco
In Collection: Group Normalization
Config: configs/gn/mask_rcnn_r101_fpn_gn-all_2x_coco.py
Metadata:
Training Memory (GB): 9.9
inference time (s/im): 0.11111
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 41.9
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 37.6
Weights: https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r101_fpn_gn-all_2x_coco/mask_rcnn_r101_fpn_gn-all_2x_coco_20200205-d96b1b50.pth
- Name: mask_rcnn_r101_fpn_gn-all_3x_coco
In Collection: Group Normalization
Config: configs/gn/mask_rcnn_r101_fpn_gn-all_3x_coco.py
Metadata:
Training Memory (GB): 9.9
Epochs: 36
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 42.1
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 38.0
Weights: https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r101_fpn_gn-all_3x_coco/mask_rcnn_r101_fpn_gn-all_3x_coco_20200513_181609-0df864f4.pth
- Name: mask_rcnn_r50_fpn_gn-all_contrib_2x_coco
In Collection: Group Normalization
Config: configs/gn/mask_rcnn_r50_fpn_gn-all_contrib_2x_coco.py
Metadata:
Training Memory (GB): 7.1
inference time (s/im): 0.09174
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 40.0
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 36.1
Weights: https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r50_fpn_gn-all_contrib_2x_coco/mask_rcnn_r50_fpn_gn-all_contrib_2x_coco_20200207-20d3e849.pth
- Name: mask_rcnn_r50_fpn_gn-all_contrib_3x_coco
In Collection: Group Normalization
Config: configs/gn/mask_rcnn_r50_fpn_gn-all_contrib_3x_coco.py
Metadata:
Training Memory (GB): 7.1
Epochs: 36
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 40.1
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 36.2
Weights: https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r50_fpn_gn-all_contrib_3x_coco/mask_rcnn_r50_fpn_gn-all_contrib_3x_coco_20200225-542aefbc.pth
# Grid R-CNN
## Introduction
<!-- [ALGORITHM] -->
```latex
@inproceedings{lu2019grid,
title={Grid r-cnn},
author={Lu, Xin and Li, Buyu and Yue, Yuxin and Li, Quanquan and Yan, Junjie},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
year={2019}
}
@article{lu2019grid,
title={Grid R-CNN Plus: Faster and Better},
author={Lu, Xin and Li, Buyu and Yue, Yuxin and Li, Quanquan and Yan, Junjie},
journal={arXiv preprint arXiv:1906.05688},
year={2019}
}
```
## Results and Models
| Backbone | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
|:-----------:|:-------:|:--------:|:--------------:|:------:|:------:|:--------:|
| R-50 | 2x | 5.1 | 15.0 | 40.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/grid_rcnn/grid_rcnn_r50_fpn_gn-head_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/grid_rcnn/grid_rcnn_r50_fpn_gn-head_2x_coco/grid_rcnn_r50_fpn_gn-head_2x_coco_20200130-6cca8223.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/grid_rcnn/grid_rcnn_r50_fpn_gn-head_2x_coco/grid_rcnn_r50_fpn_gn-head_2x_coco_20200130_221140.log.json) |
| R-101 | 2x | 7.0 | 12.6 | 41.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/grid_rcnn/grid_rcnn_r101_fpn_gn-head_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/grid_rcnn/grid_rcnn_r101_fpn_gn-head_2x_coco/grid_rcnn_r101_fpn_gn-head_2x_coco_20200309-d6eca030.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/grid_rcnn/grid_rcnn_r101_fpn_gn-head_2x_coco/grid_rcnn_r101_fpn_gn-head_2x_coco_20200309_164224.log.json) |
| X-101-32x4d | 2x | 8.3 | 10.8 | 42.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/grid_rcnn/grid_rcnn_x101_32x4d_fpn_gn-head_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/grid_rcnn/grid_rcnn_x101_32x4d_fpn_gn-head_2x_coco/grid_rcnn_x101_32x4d_fpn_gn-head_2x_coco_20200130-d8f0e3ff.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/grid_rcnn/grid_rcnn_x101_32x4d_fpn_gn-head_2x_coco/grid_rcnn_x101_32x4d_fpn_gn-head_2x_coco_20200130_215413.log.json) |
| X-101-64x4d | 2x | 11.3 | 7.7 | 43.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/grid_rcnn/grid_rcnn_x101_64x4d_fpn_gn-head_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/grid_rcnn/grid_rcnn_x101_64x4d_fpn_gn-head_2x_coco/grid_rcnn_x101_64x4d_fpn_gn-head_2x_coco_20200204-ec76a754.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/grid_rcnn/grid_rcnn_x101_64x4d_fpn_gn-head_2x_coco/grid_rcnn_x101_64x4d_fpn_gn-head_2x_coco_20200204_080641.log.json) |
**Notes:**
- All models are trained with 8 GPUs instead of 32 GPUs in the original paper.
- The warming up lasts for 1 epoch and `2x` here indicates 25 epochs.
_base_ = './grid_rcnn_r50_fpn_gn-head_2x_coco.py'
model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
_base_ = ['grid_rcnn_r50_fpn_gn-head_2x_coco.py']
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[8, 11])
checkpoint_config = dict(interval=1)
# runtime settings
runner = dict(type='EpochBasedRunner', max_epochs=12)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment