Commit 85529f35 authored by unknown's avatar unknown
Browse files

添加openmmlab测试用例

parent b21b0c01
_base_ = './fovea_r50_fpn_4x4_2x_coco.py'
model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
_base_ = [
'../_base_/datasets/coco_detection.py',
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
# model settings
model = dict(
type='FOVEA',
pretrained='torchvision://resnet50',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch'),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
start_level=1,
num_outs=5,
add_extra_convs='on_input'),
bbox_head=dict(
type='FoveaHead',
num_classes=80,
in_channels=256,
stacked_convs=4,
feat_channels=256,
strides=[8, 16, 32, 64, 128],
base_edge_list=[16, 32, 64, 128, 256],
scale_ranges=((1, 64), (32, 128), (64, 256), (128, 512), (256, 2048)),
sigma=0.4,
with_deform=False,
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=1.50,
alpha=0.4,
loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0)),
# training and testing settings
train_cfg=dict(),
test_cfg=dict(
nms_pre=1000,
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.5),
max_per_img=100))
data = dict(samples_per_gpu=4, workers_per_gpu=4)
# optimizer
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
_base_ = './fovea_r50_fpn_4x4_1x_coco.py'
# learning policy
lr_config = dict(step=[16, 22])
runner = dict(type='EpochBasedRunner', max_epochs=24)
Collections:
- Name: FoveaBox
Metadata:
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 4x NVIDIA V100 GPUs
Architecture:
- FPN
- ResNet
Paper: https://arxiv.org/abs/1904.03797
README: configs/foveabox/README.md
Models:
- Name: fovea_r50_fpn_4x4_1x_coco
In Collection: FoveaBox
Config: configs/foveabox/fovea_r50_fpn_4x4_1x_coco.py
Metadata:
Training Memory (GB): 5.6
inference time (s/im): 0.04149
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 36.5
Weights: https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_r50_fpn_4x4_1x_coco/fovea_r50_fpn_4x4_1x_coco_20200219-ee4d5303.pth
- Name: fovea_r50_fpn_4x4_2x_coco
In Collection: FoveaBox
Config: configs/foveabox/fovea_r50_fpn_4x4_2x_coco.py
Metadata:
Training Memory (GB): 5.6
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 37.2
Weights: https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_r50_fpn_4x4_2x_coco/fovea_r50_fpn_4x4_2x_coco_20200203-2df792b1.pth
- Name: fovea_align_r50_fpn_gn-head_4x4_2x_coco
In Collection: FoveaBox
Config: configs/foveabox/fovea_align_r50_fpn_gn-head_4x4_2x_coco.py
Metadata:
Training Memory (GB): 8.1
inference time (s/im): 0.05155
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 37.9
Weights: https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_align_r50_fpn_gn-head_4x4_2x_coco/fovea_align_r50_fpn_gn-head_4x4_2x_coco_20200203-8987880d.pth
- Name: fovea_align_r50_fpn_gn-head_mstrain_640-800_4x4_2x_coco
In Collection: FoveaBox
Config: configs/foveabox/fovea_align_r50_fpn_gn-head_mstrain_640-800_4x4_2x_coco.py
Metadata:
Training Memory (GB): 8.1
inference time (s/im): 0.05464
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 40.4
Weights: https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_align_r50_fpn_gn-head_mstrain_640-800_4x4_2x_coco/fovea_align_r50_fpn_gn-head_mstrain_640-800_4x4_2x_coco_20200205-85ce26cb.pth
- Name: fovea_r101_fpn_4x4_1x_coco
In Collection: FoveaBox
Config: configs/foveabox/fovea_r101_fpn_4x4_1x_coco.py
Metadata:
Training Memory (GB): 9.2
inference time (s/im): 0.05747
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 38.6
Weights: https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_r101_fpn_4x4_1x_coco/fovea_r101_fpn_4x4_1x_coco_20200219-05e38f1c.pth
- Name: fovea_r101_fpn_4x4_2x_coco
In Collection: FoveaBox
Config: configs/foveabox/fovea_r101_fpn_4x4_2x_coco.py
Metadata:
Training Memory (GB): 11.7
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 40.0
Weights: https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_r101_fpn_4x4_2x_coco/fovea_r101_fpn_4x4_2x_coco_20200208-02320ea4.pth
- Name: fovea_align_r101_fpn_gn-head_4x4_2x_coco
In Collection: FoveaBox
Config: configs/foveabox/fovea_align_r101_fpn_gn-head_4x4_2x_coco.py
Metadata:
Training Memory (GB): 11.7
inference time (s/im): 0.06803
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 40.0
Weights: https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_align_r101_fpn_gn-head_4x4_2x_coco/fovea_align_r101_fpn_gn-head_4x4_2x_coco_20200208-c39a027a.pth
- Name: fovea_align_r101_fpn_gn-head_mstrain_640-800_4x4_2x_coco
In Collection: FoveaBox
Config: configs/foveabox/fovea_align_r101_fpn_gn-head_mstrain_640-800_4x4_2x_coco.py
Metadata:
Training Memory (GB): 11.7
inference time (s/im): 0.06803
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 42.0
Weights: https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_align_r101_fpn_gn-head_mstrain_640-800_4x4_2x_coco/fovea_align_r101_fpn_gn-head_mstrain_640-800_4x4_2x_coco_20200208-649c5eb6.pth
# Mixed Precision Training
## Introduction
<!-- [OTHERS] -->
```latex
@article{micikevicius2017mixed,
title={Mixed precision training},
author={Micikevicius, Paulius and Narang, Sharan and Alben, Jonah and Diamos, Gregory and Elsen, Erich and Garcia, David and Ginsburg, Boris and Houston, Michael and Kuchaiev, Oleksii and Venkatesh, Ganesh and others},
journal={arXiv preprint arXiv:1710.03740},
year={2017}
}
```
## Results and Models
| Architecture | Backbone | Style | Conv | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
|:------------:|:---------:|:-------:|:------------:|:-------:|:--------:|:--------------:|:------:|:-------:|:------:|:--------:|
| Faster R-CNN | R-50 | pytorch | - | 1x | 3.4 | 28.8 | 37.5 | - |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fp16/faster_rcnn_r50_fpn_fp16_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/fp16/faster_rcnn_r50_fpn_fp16_1x_coco/faster_rcnn_r50_fpn_fp16_1x_coco_20200204-d4dc1471.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/fp16/faster_rcnn_r50_fpn_fp16_1x_coco/faster_rcnn_r50_fpn_fp16_1x_coco_20200204_143530.log.json) |
| Mask R-CNN | R-50 | pytorch | - | 1x | 3.6 | 24.1 | 38.1 | 34.7 |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fp16/mask_rcnn_r50_fpn_fp16_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/fp16/mask_rcnn_r50_fpn_fp16_1x_coco/mask_rcnn_r50_fpn_fp16_1x_coco_20200205-59faf7e4.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/fp16/mask_rcnn_r50_fpn_fp16_1x_coco/mask_rcnn_r50_fpn_fp16_1x_coco_20200205_130539.log.json) |
| Mask R-CNN | R-50 | pytorch | dconv(c3-c5) | 1x | 3.0 | | 41.9 | 37.5 |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fp16/mask_rcnn_r50_fpn_fp16_dconv_c3-c5_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/fp16/mask_rcnn_r50_fpn_fp16_dconv_c3-c5_1x_coco/mask_rcnn_r50_fpn_fp16_dconv_c3-c5_1x_coco_20210520_180247-c06429d2.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/fp16/mask_rcnn_r50_fpn_fp16_dconv_c3-c5_1x_coco/mask_rcnn_r50_fpn_fp16_dconv_c3-c5_1x_coco_20210520_180247.log.json) |
| Mask R-CNN | R-50 | pytorch | mdconv(c3-c5)| 1x | 3.1 | | 42.0 | 37.6 |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fp16/mask_rcnn_r50_fpn_fp16_mdconv_c3-c5_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/fp16/mask_rcnn_r50_fpn_fp16_mdconv_c3-c5_1x_coco/mask_rcnn_r50_fpn_fp16_mdconv_c3-c5_1x_coco_20210520_180434-cf8fefa5.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/fp16/mask_rcnn_r50_fpn_fp16_mdconv_c3-c5_1x_coco/mask_rcnn_r50_fpn_fp16_mdconv_c3-c5_1x_coco_20210520_180434.log.json) |
| Retinanet | R-50 | pytorch | - | 1x | 2.8 | 31.6 | 36.4 | |[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fp16/retinanet_r50_fpn_fp16_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/fp16/retinanet_r50_fpn_fp16_1x_coco/retinanet_r50_fpn_fp16_1x_coco_20200702-0dbfb212.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/fp16/retinanet_r50_fpn_fp16_1x_coco/retinanet_r50_fpn_fp16_1x_coco_20200702_020127.log.json) |
_base_ = '../cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py'
# fp16 settings
fp16 = dict(loss_scale=512.)
_base_ = '../double_heads/dh_faster_rcnn_r50_fpn_1x_coco.py'
# fp16 settings
fp16 = dict(loss_scale=512.)
_base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
# fp16 settings
fp16 = dict(loss_scale=512.)
_base_ = '../dcn/faster_rcnn_r50_fpn_mdpool_1x_coco.py'
# fp16 settings
fp16 = dict(loss_scale=512.)
_base_ = '../mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco.py'
# fp16 settings
fp16 = dict(loss_scale=512.)
_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
# fp16 settings
fp16 = dict(loss_scale=512.)
_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
model = dict(
backbone=dict(
dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
stage_with_dcn=(False, True, True, True)))
fp16 = dict(loss_scale=512.)
_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
model = dict(
backbone=dict(
dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
stage_with_dcn=(False, True, True, True)))
fp16 = dict(loss_scale=512.)
_base_ = '../resnest/mask_rcnn_s50_fpn_syncbn-backbone+head_mstrain_1x_coco.py'
# fp16 settings
fp16 = dict(loss_scale=512.)
Collections:
- Name: FP16
Metadata:
Training Data: COCO
Training Techniques:
- Mixed Precision Training
Training Resources: 8x NVIDIA V100 GPUs
Paper: https://arxiv.org/abs/1710.03740
README: configs/fp16/README.md
Models:
- Name: faster_rcnn_r50_fpn_fp16_1x_coco
In Collection: FP16
Config: configs/fp16/faster_rcnn_r50_fpn_fp16_1x_coco.py
Metadata:
Training Memory (GB): 3.4
inference time (s/im): 0.03472
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 37.5
Weights: https://download.openmmlab.com/mmdetection/v2.0/fp16/faster_rcnn_r50_fpn_fp16_1x_coco/faster_rcnn_r50_fpn_fp16_1x_coco_20200204-d4dc1471.pth
- Name: mask_rcnn_r50_fpn_fp16_1x_coco
In Collection: FP16
Config: configs/fp16/mask_rcnn_r50_fpn_fp16_1x_coco.py
Metadata:
Training Memory (GB): 3.6
inference time (s/im): 0.04149
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 38.1
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 34.7
Weights: https://download.openmmlab.com/mmdetection/v2.0/fp16/mask_rcnn_r50_fpn_fp16_1x_coco/mask_rcnn_r50_fpn_fp16_1x_coco_20200205-59faf7e4.pth
- Name: retinanet_r50_fpn_fp16_1x_coco
In Collection: FP16
Config: configs/fp16/retinanet_r50_fpn_fp16_1x_coco.py
Metadata:
Training Memory (GB): 2.8
inference time (s/im): 0.03165
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 36.4
Weights: https://download.openmmlab.com/mmdetection/v2.0/fp16/retinanet_r50_fpn_fp16_1x_coco/retinanet_r50_fpn_fp16_1x_coco_20200702-0dbfb212.pth
_base_ = '../retinanet/retinanet_r50_caffe_fpn_1x_coco.py'
# fp16 settings
fp16 = dict(loss_scale=512.)
_base_ = '../retinanet/retinanet_r50_fpn_1x_coco.py'
# fp16 settings
fp16 = dict(loss_scale=512.)
_base_ = '../ssd/ssd300_coco.py'
# fp16 settings
fp16 = dict(loss_scale=512.)
_base_ = '../vfnet/vfnet_r50_fpn_1x_coco.py'
# fp16 settings
fp16 = dict(loss_scale=512.)
_base_ = '../yolo/yolov3_d53_mstrain-416_273e_coco.py'
# fp16 settings
fp16 = dict(loss_scale=512.)
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment