Commit 85529f35 authored by unknown's avatar unknown
Browse files

添加openmmlab测试用例

parent b21b0c01
_base_ = './faster_rcnn_r50_fpn_2x_coco.py'
model = dict(
pretrained='open-mmlab://resnext101_64x4d',
backbone=dict(
type='ResNeXt',
depth=101,
groups=64,
base_width=4,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
style='pytorch'))
_base_ = [
'../common/mstrain_3x_coco.py', '../_base_/models/faster_rcnn_r50_fpn.py'
]
model = dict(
pretrained='open-mmlab://resnext101_64x4d',
backbone=dict(
type='ResNeXt',
depth=101,
groups=64,
base_width=4,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
style='pytorch'))
Collections:
- Name: Faster R-CNN
Metadata:
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x NVIDIA V100 GPUs
Architecture:
- FPN
- RPN
- ResNet
- RoIPool
Paper: https://arxiv.org/abs/1506.01497
README: configs/faster_rcnn/README.md
Models:
- Name: faster_rcnn_r50_caffe_dc5_1x_coco
In Collection: Faster R-CNN
Config: configs/faster_rcnn/faster_rcnn_r50_caffe_dc5_1x_coco.py
Metadata:
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 37.2
Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_dc5_1x_coco/faster_rcnn_r50_caffe_dc5_1x_coco_20201030_151909-531f0f43.pth
- Name: faster_rcnn_r50_caffe_fpn_1x_coco
In Collection: Faster R-CNN
Config: configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_1x_coco.py
Metadata:
Training Memory (GB): 3.8
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 37.8
Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_fpn_1x_coco/faster_rcnn_r50_caffe_fpn_1x_coco_bbox_mAP-0.378_20200504_180032-c5925ee5.pth
- Name: faster_rcnn_r50_fpn_1x_coco
In Collection: Faster R-CNN
Config: configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py
Metadata:
Training Memory (GB): 4.0
inference time (s/im): 0.04673
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 37.4
Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth
- Name: faster_rcnn_r50_fpn_2x_coco
In Collection: Faster R-CNN
Config: configs/faster_rcnn/faster_rcnn_r50_fpn_2x_coco.py
Metadata:
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 38.4
Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_2x_coco/faster_rcnn_r50_fpn_2x_coco_bbox_mAP-0.384_20200504_210434-a5d8aa15.pth
- Name: faster_rcnn_r101_caffe_fpn_1x_coco
In Collection: Faster R-CNN
Config: configs/faster_rcnn/faster_rcnn_r101_caffe_fpn_1x_coco.py
Metadata:
Training Memory (GB): 5.7
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 39.8
Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r101_caffe_fpn_1x_coco/faster_rcnn_r101_caffe_fpn_1x_coco_bbox_mAP-0.398_20200504_180057-b269e9dd.pth
- Name: faster_rcnn_r101_fpn_1x_coco
In Collection: Faster R-CNN
Config: configs/faster_rcnn/faster_rcnn_r101_fpn_1x_coco.py
Metadata:
Training Memory (GB): 6.0
inference time (s/im): 0.0641
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 39.4
Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r101_fpn_1x_coco/faster_rcnn_r101_fpn_1x_coco_20200130-f513f705.pth
- Name: faster_rcnn_r101_fpn_2x_coco
In Collection: Faster R-CNN
Config: configs/faster_rcnn/faster_rcnn_r101_fpn_2x_coco.py
Metadata:
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 39.8
Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r101_fpn_2x_coco/faster_rcnn_r101_fpn_2x_coco_bbox_mAP-0.398_20200504_210455-1d2dac9c.pth
- Name: faster_rcnn_x101_32x4d_fpn_1x_coco
In Collection: Faster R-CNN
Config: configs/faster_rcnn/faster_rcnn_x101_32x4d_fpn_1x_coco.py
Metadata:
Training Memory (GB): 7.2
inference time (s/im): 0.07246
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 41.2
Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_32x4d_fpn_1x_coco/faster_rcnn_x101_32x4d_fpn_1x_coco_20200203-cff10310.pth
- Name: faster_rcnn_x101_32x4d_fpn_2x_coco
In Collection: Faster R-CNN
Config: configs/faster_rcnn/faster_rcnn_x101_32x4d_fpn_2x_coco.py
Metadata:
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 41.2
Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_32x4d_fpn_2x_coco/faster_rcnn_x101_32x4d_fpn_2x_coco_bbox_mAP-0.412_20200506_041400-64a12c0b.pth
- Name: faster_rcnn_x101_64x4d_fpn_1x_coco
In Collection: Faster R-CNN
Config: configs/faster_rcnn/faster_rcnn_x101_64x4d_fpn_1x_coco.py
Metadata:
Training Memory (GB): 10.3
inference time (s/im): 0.10638
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 42.1
Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_64x4d_fpn_1x_coco/faster_rcnn_x101_64x4d_fpn_1x_coco_20200204-833ee192.pth
- Name: faster_rcnn_x101_64x4d_fpn_2x_coco
In Collection: Faster R-CNN
Config: configs/faster_rcnn/faster_rcnn_x101_64x4d_fpn_2x_coco.py
Metadata:
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 41.6
Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_64x4d_fpn_2x_coco/faster_rcnn_x101_64x4d_fpn_2x_coco_20200512_161033-5961fa95.pth
- Name: faster_rcnn_r50_fpn_iou_1x_coco
In Collection: Faster R-CNN
Config: configs/faster_rcnn/faster_rcnn_r50_fpn_iou_1x_coco.py
Metadata:
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 37.9
Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_iou_1x_coco-fdd207f3.pth
- Name: faster_rcnn_r50_fpn_giou_1x_coco
In Collection: Faster R-CNN
Config: configs/faster_rcnn/faster_rcnn_r50_fpn_giou_1x_coco.py
Metadata:
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 37.6
Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_giou_1x_coco-0eada910.pth
- Name: faster_rcnn_r50_fpn_bounded_iou_1x_coco
In Collection: Faster R-CNN
Config: configs/faster_rcnn/faster_rcnn_r50_fpn_bounded_iou_1x_coco.py
Metadata:
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 37.4
Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_bounded_iou_1x_coco-98ad993b.pth
- Name: faster_rcnn_r50_caffe_dc5_mstrain_1x_coco
In Collection: Faster R-CNN
Config: configs/faster_rcnn/faster_rcnn_r50_caffe_dc5_mstrain_1x_coco.py
Metadata:
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 37.4
Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_dc5_mstrain_1x_coco/faster_rcnn_r50_caffe_dc5_mstrain_1x_coco_20201028_233851-b33d21b9.pth
- Name: faster_rcnn_r50_caffe_dc5_mstrain_3x_coco
In Collection: Faster R-CNN
Config: configs/faster_rcnn/faster_rcnn_r50_caffe_dc5_mstrain_3x_coco.py
Metadata:
Epochs: 36
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 38.7
Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_dc5_mstrain_3x_coco/faster_rcnn_r50_caffe_dc5_mstrain_3x_coco_20201028_002107-34a53b2c.pth
- Name: faster_rcnn_r50_caffe_fpn_mstrain_2x_coco
In Collection: Faster R-CNN
Config: configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_2x_coco.py
Metadata:
Training Memory (GB): 4.3
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 39.7
Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_2x_coco/faster_rcnn_r50_caffe_fpn_mstrain_2x_coco_bbox_mAP-0.397_20200504_231813-10b2de58.pth
- Name: faster_rcnn_r50_caffe_fpn_mstrain_3x_coco
In Collection: Faster R-CNN
Config: configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco.py
Metadata:
Training Memory (GB): 3.7
Epochs: 36
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 39.9
Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco_20210526_095054-f002305e.pth
- Name: faster_rcnn_r50_fpn_mstrain_3x_coco
In Collection: Faster R-CNN
Config: configs/faster_rcnn/faster_rcnn_r50_fpn_mstrain_3x_coco.py
Metadata:
Training Memory (GB): 3.9
Epochs: 36
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 40.3
Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_mstrain_3x_coco/faster_rcnn_r50_fpn_mstrain_3x_coco_20210524_110822-3a066a07.pth
- Name: faster_rcnn_r101_caffe_fpn_mstrain_3x_coco
In Collection: Faster R-CNN
Config: configs/faster_rcnn/faster_rcnn_r101_caffe_fpn_mstrain_3x_coco.py
Metadata:
Training Memory (GB): 5.6
Epochs: 36
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 42.0
Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r101_caffe_fpn_mstrain_3x_coco/faster_rcnn_r101_caffe_fpn_mstrain_3x_coco_20210526_095742-9178be4b.pth
- Name: faster_rcnn_r101_fpn_mstrain_3x_coco
In Collection: Faster R-CNN
Config: configs/faster_rcnn/faster_rcnn_r101_fpn_mstrain_3x_coco.py
Metadata:
Training Memory (GB): 5.8
Epochs: 36
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 41.8
Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r101_fpn_mstrain_3x_coco/faster_rcnn_r101_fpn_mstrain_3x_coco_20210524_110822-78060bff.pth
- Name: faster_rcnn_x101_32x4d_fpn_mstrain_3x_coco
In Collection: Faster R-CNN
Config: configs/faster_rcnn/faster_rcnn_x101_32x4d_fpn_mstrain_3x_coco.py
Metadata:
Training Memory (GB): 7.0
Epochs: 36
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 42.5
Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_32x4d_fpn_mstrain_3x_coco/faster_rcnn_x101_32x4d_fpn_mstrain_3x_coco_20210524_124151-e8595dde.pth
- Name: faster_rcnn_x101_32x8d_fpn_mstrain_3x_coco
In Collection: Faster R-CNN
Config: configs/faster_rcnn/faster_rcnn_x101_32x8d_fpn_mstrain_3x_coco.py
Metadata:
Training Memory (GB): 10.1
Epochs: 36
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 42.4
Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_32x8d_fpn_mstrain_3x_coco/faster_rcnn_x101_32x8d_fpn_mstrain_3x_coco_20210604_182954-002e082a.pth
- Name: faster_rcnn_x101_64x4d_fpn_mstrain_3x_coco
In Collection: Faster R-CNN
Config: configs/faster_rcnn/faster_rcnn_x101_64x4d_fpn_mstrain_3x_coco.py
Metadata:
Training Memory (GB): 10.0
Epochs: 36
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 43.1
Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_64x4d_fpn_mstrain_3x_coco/faster_rcnn_x101_64x4d_fpn_mstrain_3x_coco_20210524_124528-26c63de6.pth
# FCOS: Fully Convolutional One-Stage Object Detection
## Introduction
<!-- [ALGORITHM] -->
```latex
@article{tian2019fcos,
title={FCOS: Fully Convolutional One-Stage Object Detection},
author={Tian, Zhi and Shen, Chunhua and Chen, Hao and He, Tong},
journal={arXiv preprint arXiv:1904.01355},
year={2019}
}
```
## Results and Models
| Backbone | Style | GN | MS train | Tricks | DCN | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
|:---------:|:-------:|:-------:|:--------:|:-------:|:-------:|:-------:|:--------:|:--------------:|:------:|:------:|:--------:|
| R-50 | caffe | Y | N | N | N | 1x | 3.6 | 22.7 | 36.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fcos/fcos_r50_caffe_fpn_gn-head_1x_coco.py) | [model](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/fcos/fcos_r50_caffe_fpn_gn-head_1x_coco/fcos_r50_caffe_fpn_gn-head_1x_coco-821213aa.pth) &#124; [log](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/fcos/fcos_r50_caffe_fpn_gn-head_1x_coco/20201227_180009.log.json) |
| R-50 | caffe | Y | N | Y | N | 1x | 3.7 | - | 38.7 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fcos/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_1x_coco.py) | [model](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/fcos/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_1x_coco/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_1x_coco-0a0d75a8.pth) &#124; [log](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/fcos/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_1x_coco/20210105_135818.log.json)|
| R-50 | caffe | Y | N | Y | Y | 1x | 3.8 | - | 42.3 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fcos/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_dcn_1x_coco.py) | [model](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/fcos/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_dcn_1x_coco/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_dcn_1x_coco-ae4d8b3d.pth) &#124; [log](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/fcos/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_dcn_1x_coco/20210105_224556.log.json)|
| R-101 | caffe | Y | N | N | N | 1x | 5.5 | 17.3 | 39.1 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fcos/fcos_r101_caffe_fpn_gn-head_1x_coco.py) | [model](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/fcos/fcos_r101_caffe_fpn_gn-head_1x_coco/fcos_r101_caffe_fpn_gn-head_1x_coco-0e37b982.pth) &#124; [log](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/fcos/fcos_r101_caffe_fpn_gn-head_1x_coco/20210103_155046.log.json) |
| Backbone | Style | GN | MS train | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
|:---------:|:-------:|:-------:|:--------:|:-------:|:--------:|:--------------:|:------:|:------:|:--------:|
| R-50 | caffe | Y | Y | 2x | 2.6 | 22.9 | 38.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fcos/fcos_r50_caffe_fpn_gn-head_mstrain_640-800_2x_coco.py) | [model](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/fcos/fcos_r50_caffe_fpn_gn-head_mstrain_640-800_2x_coco/fcos_r50_caffe_fpn_gn-head_mstrain_640-800_2x_coco-d92ceeea.pth) &#124; [log](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/fcos/fcos_r50_caffe_fpn_gn-head_mstrain_640-800_2x_coco/20201227_161900.log.json) |
| R-101 | caffe | Y | Y | 2x | 5.5 | 17.3 | 40.8 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fcos/fcos_r101_caffe_fpn_gn-head_mstrain_640-800_2x_coco.py) | [model](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/fcos/fcos_r101_caffe_fpn_gn-head_mstrain_640-800_2x_coco/fcos_r101_caffe_fpn_gn-head_mstrain_640-800_2x_coco-511424d6.pth) &#124; [log](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/fcos/fcos_r101_caffe_fpn_gn-head_mstrain_640-800_2x_coco/20210103_155046.log.json) |
| X-101 | pytorch | Y | Y | 2x | 10.0 | 9.7 | 42.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/fcos/fcos_x101_64x4d_fpn_gn-head_mstrain_640-800_2x_coco.py) | [model](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/fcos/fcos_x101_64x4d_fpn_gn-head_mstrain_640-800_2x_coco/fcos_x101_64x4d_fpn_gn-head_mstrain_640-800_2x_coco-ede514a8.pth) &#124; [log](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/fcos/fcos_x101_64x4d_fpn_gn-head_mstrain_640-800_2x_coco/20210114_133041.log.json) |
**Notes:**
- The X-101 backbone is X-101-64x4d.
- Tricks means setting `norm_on_bbox`, `centerness_on_reg`, `center_sampling` as `True`.
- DCN means using `DCNv2` in both backbone and head.
_base_ = 'fcos_r50_caffe_fpn_gn-head_1x_coco.py'
model = dict(
pretrained='open-mmlab://detectron2/resnet50_caffe',
bbox_head=dict(
norm_on_bbox=True,
centerness_on_reg=True,
dcn_on_last_conv=False,
center_sampling=True,
conv_bias=True,
loss_bbox=dict(type='GIoULoss', loss_weight=1.0)),
# training and testing settings
test_cfg=dict(nms=dict(type='nms', iou_threshold=0.6)))
# dataset settings
img_norm_cfg = dict(
mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))
optimizer_config = dict(_delete_=True, grad_clip=None)
lr_config = dict(warmup='linear')
_base_ = 'fcos_r50_caffe_fpn_gn-head_1x_coco.py'
model = dict(
pretrained='open-mmlab://detectron2/resnet50_caffe',
backbone=dict(
dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
stage_with_dcn=(False, True, True, True)),
bbox_head=dict(
norm_on_bbox=True,
centerness_on_reg=True,
dcn_on_last_conv=True,
center_sampling=True,
conv_bias=True,
loss_bbox=dict(type='GIoULoss', loss_weight=1.0)),
# training and testing settings
test_cfg=dict(nms=dict(type='nms', iou_threshold=0.6)))
# dataset settings
img_norm_cfg = dict(
mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))
optimizer_config = dict(_delete_=True, grad_clip=None)
lr_config = dict(warmup='linear')
_base_ = './fcos_r50_caffe_fpn_gn-head_1x_coco.py'
model = dict(bbox_head=dict(center_sampling=True, center_sample_radius=1.5))
_base_ = './fcos_r50_caffe_fpn_gn-head_1x_coco.py'
model = dict(
pretrained='open-mmlab://detectron/resnet101_caffe',
backbone=dict(depth=101))
_base_ = './fcos_r50_caffe_fpn_gn-head_1x_coco.py'
model = dict(
pretrained='open-mmlab://detectron/resnet101_caffe',
backbone=dict(depth=101))
img_norm_cfg = dict(
mean=[102.9801, 115.9465, 122.7717], std=[1.0, 1.0, 1.0], to_rgb=False)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='Resize',
img_scale=[(1333, 640), (1333, 800)],
multiscale_mode='value',
keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))
# learning policy
lr_config = dict(step=[16, 22])
runner = dict(type='EpochBasedRunner', max_epochs=24)
_base_ = [
'../_base_/datasets/coco_detection.py',
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
# model settings
model = dict(
type='FCOS',
pretrained='open-mmlab://detectron/resnet50_caffe',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=False),
norm_eval=True,
style='caffe'),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
start_level=1,
add_extra_convs=True,
extra_convs_on_inputs=False, # use P5
num_outs=5,
relu_before_extra_convs=True),
bbox_head=dict(
type='FCOSHead',
num_classes=80,
in_channels=256,
stacked_convs=4,
feat_channels=256,
strides=[8, 16, 32, 64, 128],
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(type='IoULoss', loss_weight=1.0),
loss_centerness=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)),
# training and testing settings
train_cfg=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.4,
min_pos_iou=0,
ignore_iof_thr=-1),
allowed_border=-1,
pos_weight=-1,
debug=False),
test_cfg=dict(
nms_pre=1000,
min_bbox_size=0,
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.5),
max_per_img=100))
img_norm_cfg = dict(
mean=[102.9801, 115.9465, 122.7717], std=[1.0, 1.0, 1.0], to_rgb=False)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))
# optimizer
optimizer = dict(
lr=0.01, paramwise_cfg=dict(bias_lr_mult=2., bias_decay_mult=0.))
optimizer_config = dict(
_delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
# learning policy
lr_config = dict(
policy='step',
warmup='constant',
warmup_iters=500,
warmup_ratio=1.0 / 3,
step=[8, 11])
runner = dict(type='EpochBasedRunner', max_epochs=12)
# TODO: Remove this config after benchmarking all related configs
_base_ = 'fcos_r50_caffe_fpn_gn-head_1x_coco.py'
data = dict(samples_per_gpu=4, workers_per_gpu=4)
_base_ = './fcos_r50_caffe_fpn_gn-head_1x_coco.py'
img_norm_cfg = dict(
mean=[102.9801, 115.9465, 122.7717], std=[1.0, 1.0, 1.0], to_rgb=False)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='Resize',
img_scale=[(1333, 640), (1333, 800)],
multiscale_mode='value',
keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))
# learning policy
lr_config = dict(step=[16, 22])
runner = dict(type='EpochBasedRunner', max_epochs=24)
_base_ = './fcos_r50_caffe_fpn_gn-head_1x_coco.py'
model = dict(
pretrained='open-mmlab://resnext101_64x4d',
backbone=dict(
type='ResNeXt',
depth=101,
groups=64,
base_width=4,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch'))
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='Resize',
img_scale=[(1333, 640), (1333, 800)],
multiscale_mode='value',
keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))
# optimizer
optimizer = dict(
lr=0.01, paramwise_cfg=dict(bias_lr_mult=2., bias_decay_mult=0.))
optimizer_config = dict(
_delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
# learning policy
lr_config = dict(step=[16, 22])
runner = dict(type='EpochBasedRunner', max_epochs=24)
Collections:
- Name: FCOS
Metadata:
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x NVIDIA V100 GPUs
Architecture:
- FPN
- Group Normalization
- ResNet
Paper: https://arxiv.org/abs/1904.01355
README: configs/fcos/README.md
Models:
- Name: fcos_r50_caffe_fpn_gn-head_1x_coco
In Collection: FCOS
Config: configs/fcos/fcos_r50_caffe_fpn_gn-head_1x_coco.py
Metadata:
Training Memory (GB): 3.6
inference time (s/im): 0.04405
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 36.6
Weights: https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/fcos/fcos_r50_caffe_fpn_gn-head_1x_coco/fcos_r50_caffe_fpn_gn-head_1x_coco-821213aa.pth
- Name: fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_1x_coco
In Collection: FCOS
Config: configs/fcos/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_1x_coco.py
Metadata:
Training Memory (GB): 3.7
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 38.7
Weights: https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/fcos/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_1x_coco/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_1x_coco-0a0d75a8.pth
- Name: fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_dcn_1x_coco
In Collection: FCOS
Config: configs/fcos/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_dcn_1x_coco.py
Metadata:
Training Memory (GB): 3.8
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 42.3
Weights: https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/fcos/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_dcn_1x_coco/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_dcn_1x_coco-ae4d8b3d.pth
- Name: fcos_r101_caffe_fpn_gn-head_1x_coco
In Collection: FCOS
Config: configs/fcos/fcos_r101_caffe_fpn_gn-head_1x_coco.py
Metadata:
Training Memory (GB): 5.5
inference time (s/im): 0.0578
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 39.1
Weights: https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/fcos/fcos_r101_caffe_fpn_gn-head_1x_coco/fcos_r101_caffe_fpn_gn-head_1x_coco-0e37b982.pth
- Name: fcos_r50_caffe_fpn_gn-head_mstrain_640-800_2x_coco
In Collection: FCOS
Config: configs/fcos/fcos_r50_caffe_fpn_gn-head_mstrain_640-800_2x_coco.py
Metadata:
Training Memory (GB): 2.6
inference time (s/im): 0.04367
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 38.5
Weights: https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/fcos/fcos_r50_caffe_fpn_gn-head_mstrain_640-800_2x_coco/fcos_r50_caffe_fpn_gn-head_mstrain_640-800_2x_coco-d92ceeea.pth
- Name: fcos_r101_caffe_fpn_gn-head_mstrain_640-800_2x_coco
In Collection: FCOS
Config: configs/fcos/fcos_r101_caffe_fpn_gn-head_mstrain_640-800_2x_coco.py
Metadata:
Training Memory (GB): 5.5
inference time (s/im): 0.0578
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 40.8
Weights: https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/fcos/fcos_r101_caffe_fpn_gn-head_mstrain_640-800_2x_coco/fcos_r101_caffe_fpn_gn-head_mstrain_640-800_2x_coco-511424d6.pth
- Name: fcos_x101_64x4d_fpn_gn-head_mstrain_640-800_2x_coco
In Collection: FCOS
Config: configs/fcos/fcos_x101_64x4d_fpn_gn-head_mstrain_640-800_2x_coco.py
Metadata:
Training Memory (GB): 10.0
inference time (s/im): 0.10309
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 42.6
Weights: https://openmmlab.oss-cn-hangzhou.aliyuncs.com/mmdetection/v2.0/fcos/fcos_x101_64x4d_fpn_gn-head_mstrain_640-800_2x_coco/fcos_x101_64x4d_fpn_gn-head_mstrain_640-800_2x_coco-ede514a8.pth
# FoveaBox: Beyond Anchor-based Object Detector
<!-- [ALGORITHM] -->
FoveaBox is an accurate, flexible and completely anchor-free object detection system for object detection framework, as presented in our paper [https://arxiv.org/abs/1904.03797](https://arxiv.org/abs/1904.03797):
Different from previous anchor-based methods, FoveaBox directly learns the object existing possibility and the bounding box coordinates without anchor reference. This is achieved by: (a) predicting category-sensitive semantic maps for the object existing possibility, and (b) producing category-agnostic bounding box for each position that potentially contains an object.
## Main Results
### Results on R50/101-FPN
| Backbone | Style | align | ms-train| Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
|:---------:|:-------:|:-------:|:-------:|:-------:|:--------:|:--------------:|:------:|:------:|:--------:|
| R-50 | pytorch | N | N | 1x | 5.6 | 24.1 | 36.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/foveabox/fovea_r50_fpn_4x4_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_r50_fpn_4x4_1x_coco/fovea_r50_fpn_4x4_1x_coco_20200219-ee4d5303.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_r50_fpn_4x4_1x_coco/fovea_r50_fpn_4x4_1x_coco_20200219_223025.log.json) |
| R-50 | pytorch | N | N | 2x | 5.6 | - | 37.2 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/foveabox/fovea_r50_fpn_4x4_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_r50_fpn_4x4_2x_coco/fovea_r50_fpn_4x4_2x_coco_20200203-2df792b1.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_r50_fpn_4x4_2x_coco/fovea_r50_fpn_4x4_2x_coco_20200203_112043.log.json) |
| R-50 | pytorch | Y | N | 2x | 8.1 | 19.4 | 37.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/foveabox/fovea_align_r50_fpn_gn-head_4x4_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_align_r50_fpn_gn-head_4x4_2x_coco/fovea_align_r50_fpn_gn-head_4x4_2x_coco_20200203-8987880d.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_align_r50_fpn_gn-head_4x4_2x_coco/fovea_align_r50_fpn_gn-head_4x4_2x_coco_20200203_134252.log.json) |
| R-50 | pytorch | Y | Y | 2x | 8.1 | 18.3 | 40.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/foveabox/fovea_align_r50_fpn_gn-head_mstrain_640-800_4x4_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_align_r50_fpn_gn-head_mstrain_640-800_4x4_2x_coco/fovea_align_r50_fpn_gn-head_mstrain_640-800_4x4_2x_coco_20200205-85ce26cb.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_align_r50_fpn_gn-head_mstrain_640-800_4x4_2x_coco/fovea_align_r50_fpn_gn-head_mstrain_640-800_4x4_2x_coco_20200205_112557.log.json) |
| R-101 | pytorch | N | N | 1x | 9.2 | 17.4 | 38.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/foveabox/fovea_r101_fpn_4x4_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_r101_fpn_4x4_1x_coco/fovea_r101_fpn_4x4_1x_coco_20200219-05e38f1c.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_r101_fpn_4x4_1x_coco/fovea_r101_fpn_4x4_1x_coco_20200219_011740.log.json) |
| R-101 | pytorch | N | N | 2x | 11.7 | - | 40.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/foveabox/fovea_r101_fpn_4x4_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_r101_fpn_4x4_2x_coco/fovea_r101_fpn_4x4_2x_coco_20200208-02320ea4.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_r101_fpn_4x4_2x_coco/fovea_r101_fpn_4x4_2x_coco_20200208_202059.log.json) |
| R-101 | pytorch | Y | N | 2x | 11.7 | 14.7 | 40.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/foveabox/fovea_align_r101_fpn_gn-head_4x4_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_align_r101_fpn_gn-head_4x4_2x_coco/fovea_align_r101_fpn_gn-head_4x4_2x_coco_20200208-c39a027a.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_align_r101_fpn_gn-head_4x4_2x_coco/fovea_align_r101_fpn_gn-head_4x4_2x_coco_20200208_203337.log.json) |
| R-101 | pytorch | Y | Y | 2x | 11.7 | 14.7 | 42.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/foveabox/fovea_align_r101_fpn_gn-head_mstrain_640-800_4x4_2x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_align_r101_fpn_gn-head_mstrain_640-800_4x4_2x_coco/fovea_align_r101_fpn_gn-head_mstrain_640-800_4x4_2x_coco_20200208-649c5eb6.pth) &#124; [log](https://download.openmmlab.com/mmdetection/v2.0/foveabox/fovea_align_r101_fpn_gn-head_mstrain_640-800_4x4_2x_coco/fovea_align_r101_fpn_gn-head_mstrain_640-800_4x4_2x_coco_20200208_202124.log.json) |
[1] *1x and 2x mean the model is trained for 12 and 24 epochs, respectively.* \
[2] *Align means utilizing deformable convolution to align the cls branch.* \
[3] *All results are obtained with a single model and without any test time data augmentation.*\
[4] *We use 4 GPUs for training.*
Any pull requests or issues are welcome.
## Citations
Please consider citing our paper in your publications if the project helps your research. BibTeX reference is as follows.
```latex
@article{kong2019foveabox,
title={FoveaBox: Beyond Anchor-based Object Detector},
author={Kong, Tao and Sun, Fuchun and Liu, Huaping and Jiang, Yuning and Shi, Jianbo},
journal={arXiv preprint arXiv:1904.03797},
year={2019}
}
```
_base_ = './fovea_r50_fpn_4x4_1x_coco.py'
model = dict(
pretrained='torchvision://resnet101',
backbone=dict(depth=101),
bbox_head=dict(
with_deform=True,
norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)))
# learning policy
lr_config = dict(step=[16, 22])
runner = dict(type='EpochBasedRunner', max_epochs=24)
_base_ = './fovea_r50_fpn_4x4_1x_coco.py'
model = dict(
pretrained='torchvision://resnet101',
backbone=dict(depth=101),
bbox_head=dict(
with_deform=True,
norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)))
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='Resize',
img_scale=[(1333, 640), (1333, 800)],
multiscale_mode='value',
keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
data = dict(train=dict(pipeline=train_pipeline))
# learning policy
lr_config = dict(step=[16, 22])
runner = dict(type='EpochBasedRunner', max_epochs=24)
_base_ = './fovea_r50_fpn_4x4_1x_coco.py'
model = dict(
bbox_head=dict(
with_deform=True,
norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)))
# learning policy
lr_config = dict(step=[16, 22])
runner = dict(type='EpochBasedRunner', max_epochs=24)
optimizer_config = dict(
_delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
_base_ = './fovea_r50_fpn_4x4_1x_coco.py'
model = dict(
bbox_head=dict(
with_deform=True,
norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)))
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='Resize',
img_scale=[(1333, 640), (1333, 800)],
multiscale_mode='value',
keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
data = dict(train=dict(pipeline=train_pipeline))
# learning policy
lr_config = dict(step=[16, 22])
runner = dict(type='EpochBasedRunner', max_epochs=24)
_base_ = './fovea_r50_fpn_4x4_1x_coco.py'
model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment