Commit 85529f35 authored by unknown's avatar unknown
Browse files

添加openmmlab测试用例

parent b21b0c01
_base_ = './faster_rcnn_r50_fpn_1x_coco.py'
model = dict(
pretrained='open-mmlab://detectron2/resnet50_caffe',
backbone=dict(
norm_cfg=dict(requires_grad=False), norm_eval=True, style='caffe'))
# use caffe img_norm
img_norm_cfg = dict(
mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))
_base_ = './faster_rcnn_r50_caffe_fpn_mstrain_1x_coco.py'
model = dict(roi_head=dict(bbox_head=dict(num_classes=3)))
classes = ('person', 'bicycle', 'car')
data = dict(
train=dict(classes=classes),
val=dict(classes=classes),
test=dict(classes=classes))
load_from = 'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco_bbox_mAP-0.398_20200504_163323-30042637.pth' # noqa
_base_ = './faster_rcnn_r50_caffe_fpn_mstrain_1x_coco.py'
model = dict(roi_head=dict(bbox_head=dict(num_classes=1)))
classes = ('person', )
data = dict(
train=dict(classes=classes),
val=dict(classes=classes),
test=dict(classes=classes))
load_from = 'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco_bbox_mAP-0.398_20200504_163323-30042637.pth' # noqa
_base_ = './faster_rcnn_r50_fpn_1x_coco.py'
model = dict(
pretrained='open-mmlab://detectron2/resnet50_caffe',
backbone=dict(
norm_cfg=dict(requires_grad=False), norm_eval=True, style='caffe'))
# use caffe img_norm
img_norm_cfg = dict(
mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='Resize',
img_scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736),
(1333, 768), (1333, 800)],
multiscale_mode='value',
keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))
_base_ = './faster_rcnn_r50_caffe_fpn_mstrain_1x_coco.py'
# learning policy
lr_config = dict(step=[16, 23])
runner = dict(type='EpochBasedRunner', max_epochs=24)
_base_ = 'faster_rcnn_r50_fpn_mstrain_3x_coco.py'
model = dict(
pretrained='open-mmlab://detectron2/resnet50_caffe',
backbone=dict(
norm_cfg=dict(requires_grad=False), norm_eval=True, style='caffe'))
# use caffe img_norm
img_norm_cfg = dict(
mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='Resize',
img_scale=[(1333, 640), (1333, 800)],
multiscale_mode='range',
keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
train=dict(dataset=dict(pipeline=train_pipeline)),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))
_base_ = 'faster_rcnn_r50_caffe_fpn_mstrain_1x_coco.py'
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[60000, 80000])
# Runner type
runner = dict(_delete_=True, type='IterBasedRunner', max_iters=90000)
checkpoint_config = dict(interval=10000)
evaluation = dict(interval=10000, metric='bbox')
_base_ = [
'../_base_/models/faster_rcnn_r50_fpn.py',
'../_base_/datasets/coco_detection.py',
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
_base_ = [
'../_base_/models/faster_rcnn_r50_fpn.py',
'../_base_/datasets/coco_detection.py',
'../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py'
]
_base_ = './faster_rcnn_r50_fpn_1x_coco.py'
model = dict(
roi_head=dict(
bbox_head=dict(
reg_decoded_bbox=True,
loss_bbox=dict(type='BoundedIoULoss', loss_weight=10.0))))
_base_ = './faster_rcnn_r50_fpn_1x_coco.py'
model = dict(
roi_head=dict(
bbox_head=dict(
reg_decoded_bbox=True,
loss_bbox=dict(type='GIoULoss', loss_weight=10.0))))
_base_ = './faster_rcnn_r50_fpn_1x_coco.py'
model = dict(
roi_head=dict(
bbox_head=dict(
reg_decoded_bbox=True,
loss_bbox=dict(type='IoULoss', loss_weight=10.0))))
_base_ = [
'../common/mstrain_3x_coco.py', '../_base_/models/faster_rcnn_r50_fpn.py'
]
_base_ = './faster_rcnn_r50_fpn_1x_coco.py'
model = dict(train_cfg=dict(rcnn=dict(sampler=dict(type='OHEMSampler'))))
_base_ = [
'../_base_/models/faster_rcnn_r50_fpn.py',
'../_base_/datasets/coco_detection.py',
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
model = dict(
test_cfg=dict(
rcnn=dict(
score_thr=0.05,
nms=dict(type='soft_nms', iou_threshold=0.5),
max_per_img=100)))
_base_ = './faster_rcnn_r50_fpn_1x_coco.py'
model = dict(
pretrained='open-mmlab://resnext101_32x4d',
backbone=dict(
type='ResNeXt',
depth=101,
groups=32,
base_width=4,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
style='pytorch'))
_base_ = './faster_rcnn_r50_fpn_2x_coco.py'
model = dict(
pretrained='open-mmlab://resnext101_32x4d',
backbone=dict(
type='ResNeXt',
depth=101,
groups=32,
base_width=4,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
style='pytorch'))
_base_ = [
'../common/mstrain_3x_coco.py', '../_base_/models/faster_rcnn_r50_fpn.py'
]
model = dict(
pretrained='open-mmlab://resnext101_32x4d',
backbone=dict(
type='ResNeXt',
depth=101,
groups=32,
base_width=4,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
style='pytorch'))
_base_ = [
'../common/mstrain_3x_coco.py', '../_base_/models/faster_rcnn_r50_fpn.py'
]
model = dict(
pretrained='open-mmlab://detectron2/resnext101_32x8d',
backbone=dict(
type='ResNeXt',
depth=101,
groups=32,
base_width=8,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=False),
style='pytorch'))
# ResNeXt-101-32x8d model trained with Caffe2 at FB,
# so the mean and std need to be changed.
img_norm_cfg = dict(
mean=[103.530, 116.280, 123.675],
std=[57.375, 57.120, 58.395],
to_rgb=False)
# In mstrain 3x config, img_scale=[(1333, 640), (1333, 800)],
# multiscale_mode='range'
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='Resize',
img_scale=[(1333, 640), (1333, 800)],
multiscale_mode='range',
keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
# Use RepeatDataset to speed up training
data = dict(
train=dict(dataset=dict(pipeline=train_pipeline)),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))
_base_ = './faster_rcnn_r50_fpn_1x_coco.py'
model = dict(
pretrained='open-mmlab://resnext101_64x4d',
backbone=dict(
type='ResNeXt',
depth=101,
groups=64,
base_width=4,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
style='pytorch'))
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment