Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
dcuai
dlexamples
Commits
85529f35
Commit
85529f35
authored
Jul 30, 2022
by
unknown
Browse files
添加openmmlab测试用例
parent
b21b0c01
Changes
977
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
679 additions
and
0 deletions
+679
-0
openmmlab_test/mmdetection-speed_xinpian/configs/detectors/cascade_rcnn_r50_rfp_1x_coco.py
...xinpian/configs/detectors/cascade_rcnn_r50_rfp_1x_coco.py
+28
-0
openmmlab_test/mmdetection-speed_xinpian/configs/detectors/cascade_rcnn_r50_sac_1x_coco.py
...xinpian/configs/detectors/cascade_rcnn_r50_sac_1x_coco.py
+12
-0
openmmlab_test/mmdetection-speed_xinpian/configs/detectors/detectors_cascade_rcnn_r50_1x_coco.py
...n/configs/detectors/detectors_cascade_rcnn_r50_1x_coco.py
+32
-0
openmmlab_test/mmdetection-speed_xinpian/configs/detectors/detectors_htc_r101_20e_coco.py
..._xinpian/configs/detectors/detectors_htc_r101_20e_coco.py
+28
-0
openmmlab_test/mmdetection-speed_xinpian/configs/detectors/detectors_htc_r50_1x_coco.py
...ed_xinpian/configs/detectors/detectors_htc_r50_1x_coco.py
+28
-0
openmmlab_test/mmdetection-speed_xinpian/configs/detectors/htc_r50_rfp_1x_coco.py
...on-speed_xinpian/configs/detectors/htc_r50_rfp_1x_coco.py
+24
-0
openmmlab_test/mmdetection-speed_xinpian/configs/detectors/htc_r50_sac_1x_coco.py
...on-speed_xinpian/configs/detectors/htc_r50_sac_1x_coco.py
+8
-0
openmmlab_test/mmdetection-speed_xinpian/configs/detectors/metafile.yml
.../mmdetection-speed_xinpian/configs/detectors/metafile.yml
+109
-0
openmmlab_test/mmdetection-speed_xinpian/configs/detr/README.md
...lab_test/mmdetection-speed_xinpian/configs/detr/README.md
+27
-0
openmmlab_test/mmdetection-speed_xinpian/configs/detr/detr_r50_8x2_150e_coco.py
...tion-speed_xinpian/configs/detr/detr_r50_8x2_150e_coco.py
+150
-0
openmmlab_test/mmdetection-speed_xinpian/configs/detr/metafile.yml
..._test/mmdetection-speed_xinpian/configs/detr/metafile.yml
+28
-0
openmmlab_test/mmdetection-speed_xinpian/configs/double_heads/README.md
.../mmdetection-speed_xinpian/configs/double_heads/README.md
+22
-0
openmmlab_test/mmdetection-speed_xinpian/configs/double_heads/dh_faster_rcnn_r50_fpn_1x_coco.py
...an/configs/double_heads/dh_faster_rcnn_r50_fpn_1x_coco.py
+23
-0
openmmlab_test/mmdetection-speed_xinpian/configs/double_heads/metafile.yml
...detection-speed_xinpian/configs/double_heads/metafile.yml
+30
-0
openmmlab_test/mmdetection-speed_xinpian/configs/dynamic_rcnn/README.md
.../mmdetection-speed_xinpian/configs/dynamic_rcnn/README.md
+20
-0
openmmlab_test/mmdetection-speed_xinpian/configs/dynamic_rcnn/dynamic_rcnn_r50_fpn_1x_coco.py
...pian/configs/dynamic_rcnn/dynamic_rcnn_r50_fpn_1x_coco.py
+28
-0
openmmlab_test/mmdetection-speed_xinpian/configs/dynamic_rcnn/metafile.yml
...detection-speed_xinpian/configs/dynamic_rcnn/metafile.yml
+30
-0
openmmlab_test/mmdetection-speed_xinpian/configs/empirical_attention/README.md
...ction-speed_xinpian/configs/empirical_attention/README.md
+23
-0
openmmlab_test/mmdetection-speed_xinpian/configs/empirical_attention/faster_rcnn_r50_fpn_attention_0010_1x_coco.py
...l_attention/faster_rcnn_r50_fpn_attention_0010_1x_coco.py
+13
-0
openmmlab_test/mmdetection-speed_xinpian/configs/empirical_attention/faster_rcnn_r50_fpn_attention_0010_dcn_1x_coco.py
...tention/faster_rcnn_r50_fpn_attention_0010_dcn_1x_coco.py
+16
-0
No files found.
Too many changes to show.
To preserve performance only
977 of 977+
files are displayed.
Plain diff
Email patch
openmmlab_test/mmdetection-speed_xinpian/configs/detectors/cascade_rcnn_r50_rfp_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/cascade_rcnn_r50_fpn.py'
,
'../_base_/datasets/coco_detection.py'
,
'../_base_/schedules/schedule_1x.py'
,
'../_base_/default_runtime.py'
]
model
=
dict
(
backbone
=
dict
(
type
=
'DetectoRS_ResNet'
,
conv_cfg
=
dict
(
type
=
'ConvAWS'
),
output_img
=
True
),
neck
=
dict
(
type
=
'RFP'
,
rfp_steps
=
2
,
aspp_out_channels
=
64
,
aspp_dilations
=
(
1
,
3
,
6
,
1
),
rfp_backbone
=
dict
(
rfp_inplanes
=
256
,
type
=
'DetectoRS_ResNet'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
),
norm_eval
=
True
,
conv_cfg
=
dict
(
type
=
'ConvAWS'
),
pretrained
=
'torchvision://resnet50'
,
style
=
'pytorch'
)))
openmmlab_test/mmdetection-speed_xinpian/configs/detectors/cascade_rcnn_r50_sac_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/cascade_rcnn_r50_fpn.py'
,
'../_base_/datasets/coco_detection.py'
,
'../_base_/schedules/schedule_1x.py'
,
'../_base_/default_runtime.py'
]
model
=
dict
(
backbone
=
dict
(
type
=
'DetectoRS_ResNet'
,
conv_cfg
=
dict
(
type
=
'ConvAWS'
),
sac
=
dict
(
type
=
'SAC'
,
use_deform
=
True
),
stage_with_sac
=
(
False
,
True
,
True
,
True
)))
openmmlab_test/mmdetection-speed_xinpian/configs/detectors/detectors_cascade_rcnn_r50_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/cascade_rcnn_r50_fpn.py'
,
'../_base_/datasets/coco_detection.py'
,
'../_base_/schedules/schedule_1x.py'
,
'../_base_/default_runtime.py'
]
model
=
dict
(
backbone
=
dict
(
type
=
'DetectoRS_ResNet'
,
conv_cfg
=
dict
(
type
=
'ConvAWS'
),
sac
=
dict
(
type
=
'SAC'
,
use_deform
=
True
),
stage_with_sac
=
(
False
,
True
,
True
,
True
),
output_img
=
True
),
neck
=
dict
(
type
=
'RFP'
,
rfp_steps
=
2
,
aspp_out_channels
=
64
,
aspp_dilations
=
(
1
,
3
,
6
,
1
),
rfp_backbone
=
dict
(
rfp_inplanes
=
256
,
type
=
'DetectoRS_ResNet'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
),
norm_eval
=
True
,
conv_cfg
=
dict
(
type
=
'ConvAWS'
),
sac
=
dict
(
type
=
'SAC'
,
use_deform
=
True
),
stage_with_sac
=
(
False
,
True
,
True
,
True
),
pretrained
=
'torchvision://resnet50'
,
style
=
'pytorch'
)))
openmmlab_test/mmdetection-speed_xinpian/configs/detectors/detectors_htc_r101_20e_coco.py
0 → 100644
View file @
85529f35
_base_
=
'../htc/htc_r101_fpn_20e_coco.py'
model
=
dict
(
backbone
=
dict
(
type
=
'DetectoRS_ResNet'
,
conv_cfg
=
dict
(
type
=
'ConvAWS'
),
sac
=
dict
(
type
=
'SAC'
,
use_deform
=
True
),
stage_with_sac
=
(
False
,
True
,
True
,
True
),
output_img
=
True
),
neck
=
dict
(
type
=
'RFP'
,
rfp_steps
=
2
,
aspp_out_channels
=
64
,
aspp_dilations
=
(
1
,
3
,
6
,
1
),
rfp_backbone
=
dict
(
rfp_inplanes
=
256
,
type
=
'DetectoRS_ResNet'
,
depth
=
101
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
),
norm_eval
=
True
,
conv_cfg
=
dict
(
type
=
'ConvAWS'
),
sac
=
dict
(
type
=
'SAC'
,
use_deform
=
True
),
stage_with_sac
=
(
False
,
True
,
True
,
True
),
pretrained
=
'torchvision://resnet101'
,
style
=
'pytorch'
)))
openmmlab_test/mmdetection-speed_xinpian/configs/detectors/detectors_htc_r50_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'../htc/htc_r50_fpn_1x_coco.py'
model
=
dict
(
backbone
=
dict
(
type
=
'DetectoRS_ResNet'
,
conv_cfg
=
dict
(
type
=
'ConvAWS'
),
sac
=
dict
(
type
=
'SAC'
,
use_deform
=
True
),
stage_with_sac
=
(
False
,
True
,
True
,
True
),
output_img
=
True
),
neck
=
dict
(
type
=
'RFP'
,
rfp_steps
=
2
,
aspp_out_channels
=
64
,
aspp_dilations
=
(
1
,
3
,
6
,
1
),
rfp_backbone
=
dict
(
rfp_inplanes
=
256
,
type
=
'DetectoRS_ResNet'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
),
norm_eval
=
True
,
conv_cfg
=
dict
(
type
=
'ConvAWS'
),
sac
=
dict
(
type
=
'SAC'
,
use_deform
=
True
),
stage_with_sac
=
(
False
,
True
,
True
,
True
),
pretrained
=
'torchvision://resnet50'
,
style
=
'pytorch'
)))
openmmlab_test/mmdetection-speed_xinpian/configs/detectors/htc_r50_rfp_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'../htc/htc_r50_fpn_1x_coco.py'
model
=
dict
(
backbone
=
dict
(
type
=
'DetectoRS_ResNet'
,
conv_cfg
=
dict
(
type
=
'ConvAWS'
),
output_img
=
True
),
neck
=
dict
(
type
=
'RFP'
,
rfp_steps
=
2
,
aspp_out_channels
=
64
,
aspp_dilations
=
(
1
,
3
,
6
,
1
),
rfp_backbone
=
dict
(
rfp_inplanes
=
256
,
type
=
'DetectoRS_ResNet'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
),
norm_eval
=
True
,
conv_cfg
=
dict
(
type
=
'ConvAWS'
),
pretrained
=
'torchvision://resnet50'
,
style
=
'pytorch'
)))
openmmlab_test/mmdetection-speed_xinpian/configs/detectors/htc_r50_sac_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'../htc/htc_r50_fpn_1x_coco.py'
model
=
dict
(
backbone
=
dict
(
type
=
'DetectoRS_ResNet'
,
conv_cfg
=
dict
(
type
=
'ConvAWS'
),
sac
=
dict
(
type
=
'SAC'
,
use_deform
=
True
),
stage_with_sac
=
(
False
,
True
,
True
,
True
)))
openmmlab_test/mmdetection-speed_xinpian/configs/detectors/metafile.yml
0 → 100644
View file @
85529f35
Collections
:
-
Name
:
DetectoRS
Metadata
:
Training Data
:
COCO
Training Techniques
:
-
SGD with Momentum
-
Weight Decay
Training Resources
:
8x NVIDIA V100 GPUs
Architecture
:
-
ASPP
-
FPN
-
RFP
-
RPN
-
ResNet
-
RoIAlign
-
SAC
Paper
:
https://arxiv.org/abs/2006.02334
README
:
configs/detectors/README.md
Models
:
-
Name
:
cascade_rcnn_r50_rfp_1x_coco
In Collection
:
DetectoRS
Config
:
configs/detectors/cascade_rcnn_r50_rfp_1x_coco.py
Metadata
:
Training Memory (GB)
:
7.5
Epochs
:
12
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
44.8
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/detectors/cascade_rcnn_r50_rfp_1x_coco/cascade_rcnn_r50_rfp_1x_coco-8cf51bfd.pth
-
Name
:
cascade_rcnn_r50_sac_1x_coco
In Collection
:
DetectoRS
Config
:
configs/detectors/cascade_rcnn_r50_sac_1x_coco.py
Metadata
:
Training Memory (GB)
:
5.6
Epochs
:
12
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
45.0
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/detectors/cascade_rcnn_r50_sac_1x_coco/cascade_rcnn_r50_sac_1x_coco-24bfda62.pth
-
Name
:
detectors_cascade_rcnn_r50_1x_coco
In Collection
:
DetectoRS
Config
:
configs/detectors/detectors_cascade_rcnn_r50_1x_coco.py
Metadata
:
Training Memory (GB)
:
9.9
Epochs
:
12
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
47.4
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/detectors/detectors_cascade_rcnn_r50_1x_coco/detectors_cascade_rcnn_r50_1x_coco-32a10ba0.pth
-
Name
:
htc_r50_rfp_1x_coco
In Collection
:
DetectoRS
Config
:
configs/detectors/htc_r50_rfp_1x_coco.py
Metadata
:
Training Memory (GB)
:
11.2
Epochs
:
12
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
46.6
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
40.9
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/detectors/htc_r50_rfp_1x_coco/htc_r50_rfp_1x_coco-8ff87c51.pth
-
Name
:
htc_r50_sac_1x_coco
In Collection
:
DetectoRS
Config
:
configs/detectors/htc_r50_sac_1x_coco.py
Metadata
:
Training Memory (GB)
:
9.3
Epochs
:
12
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
46.4
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
40.9
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/detectors/htc_r50_sac_1x_coco/htc_r50_sac_1x_coco-bfa60c54.pth
-
Name
:
detectors_htc_r50_1x_coco
In Collection
:
DetectoRS
Config
:
configs/detectors/detectors_htc_r50_1x_coco.py
Metadata
:
Training Memory (GB)
:
13.6
Epochs
:
12
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
49.1
-
Task
:
Instance Segmentation
Dataset
:
COCO
Metrics
:
mask AP
:
42.6
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/detectors/detectors_htc_r50_1x_coco/detectors_htc_r50_1x_coco-329b1453.pth
openmmlab_test/mmdetection-speed_xinpian/configs/detr/README.md
0 → 100644
View file @
85529f35
# DETR
## Introduction
<!-- [ALGORITHM] -->
We provide the config files for DETR:
[
End-to-End Object Detection with Transformers
](
https://arxiv.org/abs/2005.12872
)
.
```
BibTeX
@inproceedings{detr,
author = {Nicolas Carion and
Francisco Massa and
Gabriel Synnaeve and
Nicolas Usunier and
Alexander Kirillov and
Sergey Zagoruyko},
title = {End-to-End Object Detection with Transformers},
booktitle = {ECCV},
year = {2020}
}
```
## Results and Models
| Backbone | Model | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
|:------:|:--------:|:-------:|:--------:|:--------------:|:------:|:------:|:--------:|
| R-50 | DETR |150e |7.9| | 40.1 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/detr/detr_r50_8x2_150e_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/detr/detr_r50_8x2_150e_coco/detr_r50_8x2_150e_coco_20201130_194835-2c4b8974.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/detr/detr_r50_8x2_150e_coco/detr_r50_8x2_150e_coco_20201130_194835.log.json
)
|
openmmlab_test/mmdetection-speed_xinpian/configs/detr/detr_r50_8x2_150e_coco.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/datasets/coco_detection.py'
,
'../_base_/default_runtime.py'
]
model
=
dict
(
type
=
'DETR'
,
pretrained
=
'torchvision://resnet50'
,
backbone
=
dict
(
type
=
'ResNet'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
3
,
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
False
),
norm_eval
=
True
,
style
=
'pytorch'
),
bbox_head
=
dict
(
type
=
'DETRHead'
,
num_classes
=
80
,
in_channels
=
2048
,
transformer
=
dict
(
type
=
'Transformer'
,
encoder
=
dict
(
type
=
'DetrTransformerEncoder'
,
num_layers
=
6
,
transformerlayers
=
dict
(
type
=
'BaseTransformerLayer'
,
attn_cfgs
=
[
dict
(
type
=
'MultiheadAttention'
,
embed_dims
=
256
,
num_heads
=
8
,
dropout
=
0.1
)
],
feedforward_channels
=
2048
,
ffn_dropout
=
0.1
,
operation_order
=
(
'self_attn'
,
'norm'
,
'ffn'
,
'norm'
))),
decoder
=
dict
(
type
=
'DetrTransformerDecoder'
,
return_intermediate
=
True
,
num_layers
=
6
,
transformerlayers
=
dict
(
type
=
'DetrTransformerDecoderLayer'
,
attn_cfgs
=
dict
(
type
=
'MultiheadAttention'
,
embed_dims
=
256
,
num_heads
=
8
,
dropout
=
0.1
),
feedforward_channels
=
2048
,
ffn_dropout
=
0.1
,
operation_order
=
(
'self_attn'
,
'norm'
,
'cross_attn'
,
'norm'
,
'ffn'
,
'norm'
)),
)),
positional_encoding
=
dict
(
type
=
'SinePositionalEncoding'
,
num_feats
=
128
,
normalize
=
True
),
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
bg_cls_weight
=
0.1
,
use_sigmoid
=
False
,
loss_weight
=
1.0
,
class_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'L1Loss'
,
loss_weight
=
5.0
),
loss_iou
=
dict
(
type
=
'GIoULoss'
,
loss_weight
=
2.0
)),
# training and testing settings
train_cfg
=
dict
(
assigner
=
dict
(
type
=
'HungarianAssigner'
,
cls_cost
=
dict
(
type
=
'ClassificationCost'
,
weight
=
1.
),
reg_cost
=
dict
(
type
=
'BBoxL1Cost'
,
weight
=
5.0
,
box_format
=
'xywh'
),
iou_cost
=
dict
(
type
=
'IoUCost'
,
iou_mode
=
'giou'
,
weight
=
2.0
))),
test_cfg
=
dict
(
max_per_img
=
100
))
img_norm_cfg
=
dict
(
mean
=
[
123.675
,
116.28
,
103.53
],
std
=
[
58.395
,
57.12
,
57.375
],
to_rgb
=
True
)
# train_pipeline, NOTE the img_scale and the Pad's size_divisor is different
# from the default setting in mmdet.
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
),
dict
(
type
=
'RandomFlip'
,
flip_ratio
=
0.5
),
dict
(
type
=
'AutoAugment'
,
policies
=
[[
dict
(
type
=
'Resize'
,
img_scale
=
[(
480
,
1333
),
(
512
,
1333
),
(
544
,
1333
),
(
576
,
1333
),
(
608
,
1333
),
(
640
,
1333
),
(
672
,
1333
),
(
704
,
1333
),
(
736
,
1333
),
(
768
,
1333
),
(
800
,
1333
)],
multiscale_mode
=
'value'
,
keep_ratio
=
True
)
],
[
dict
(
type
=
'Resize'
,
img_scale
=
[(
400
,
1333
),
(
500
,
1333
),
(
600
,
1333
)],
multiscale_mode
=
'value'
,
keep_ratio
=
True
),
dict
(
type
=
'RandomCrop'
,
crop_type
=
'absolute_range'
,
crop_size
=
(
384
,
600
),
allow_negative_crop
=
True
),
dict
(
type
=
'Resize'
,
img_scale
=
[(
480
,
1333
),
(
512
,
1333
),
(
544
,
1333
),
(
576
,
1333
),
(
608
,
1333
),
(
640
,
1333
),
(
672
,
1333
),
(
704
,
1333
),
(
736
,
1333
),
(
768
,
1333
),
(
800
,
1333
)],
multiscale_mode
=
'value'
,
override
=
True
,
keep_ratio
=
True
)
]]),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
1
),
dict
(
type
=
'DefaultFormatBundle'
),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_bboxes'
,
'gt_labels'
])
]
# test_pipeline, NOTE the Pad's size_divisor is different from the default
# setting (size_divisor=32). While there is little effect on the performance
# whether we use the default setting or use size_divisor=1.
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'MultiScaleFlipAug'
,
img_scale
=
(
1333
,
800
),
flip
=
False
,
transforms
=
[
dict
(
type
=
'Resize'
,
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
1
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
])
])
]
data
=
dict
(
samples_per_gpu
=
2
,
workers_per_gpu
=
2
,
train
=
dict
(
pipeline
=
train_pipeline
),
val
=
dict
(
pipeline
=
test_pipeline
),
test
=
dict
(
pipeline
=
test_pipeline
))
# optimizer
optimizer
=
dict
(
type
=
'AdamW'
,
lr
=
0.0001
,
weight_decay
=
0.0001
,
paramwise_cfg
=
dict
(
custom_keys
=
{
'backbone'
:
dict
(
lr_mult
=
0.1
,
decay_mult
=
1.0
)}))
optimizer_config
=
dict
(
grad_clip
=
dict
(
max_norm
=
0.1
,
norm_type
=
2
))
# learning policy
lr_config
=
dict
(
policy
=
'step'
,
step
=
[
100
])
runner
=
dict
(
type
=
'EpochBasedRunner'
,
max_epochs
=
150
)
openmmlab_test/mmdetection-speed_xinpian/configs/detr/metafile.yml
0 → 100644
View file @
85529f35
Collections
:
-
Name
:
DETR
Metadata
:
Training Data
:
COCO
Training Techniques
:
-
AdamW
-
Multi Scale Train
-
Gradient Clip
Training Resources
:
8x NVIDIA V100 GPUs
Architecture
:
-
ResNet
-
Transformer
Paper
:
https://arxiv.org/abs/2005.12872
README
:
configs/detr/README.md
Models
:
-
Name
:
detr_r50_8x2_150e_coco
In Collection
:
DETR
Config
:
configs/detr/detr_r50_8x2_150e_coco.py
Metadata
:
Training Memory (GB)
:
7.9
Epochs
:
150
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
40.1
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/detr/detr_r50_8x2_150e_coco/detr_r50_8x2_150e_coco_20201130_194835-2c4b8974.pth
openmmlab_test/mmdetection-speed_xinpian/configs/double_heads/README.md
0 → 100644
View file @
85529f35
# Rethinking Classification and Localization for Object Detection
## Introduction
<!-- [ALGORITHM] -->
```
latex
@article
{
wu2019rethinking,
title=
{
Rethinking Classification and Localization for Object Detection
}
,
author=
{
Yue Wu and Yinpeng Chen and Lu Yuan and Zicheng Liu and Lijuan Wang and Hongzhi Li and Yun Fu
}
,
year=
{
2019
}
,
eprint=
{
1904.06493
}
,
archivePrefix=
{
arXiv
}
,
primaryClass=
{
cs.CV
}
}
```
## Results and models
| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :------: | :--------: |
| R-50-FPN | pytorch | 1x | 6.8 | 9.5 | 40.0 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/double_heads/dh_faster_rcnn_r50_fpn_1x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/double_heads/dh_faster_rcnn_r50_fpn_1x_coco/dh_faster_rcnn_r50_fpn_1x_coco_20200130-586b67df.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/double_heads/dh_faster_rcnn_r50_fpn_1x_coco/dh_faster_rcnn_r50_fpn_1x_coco_20200130_220238.log.json
)
|
openmmlab_test/mmdetection-speed_xinpian/configs/double_heads/dh_faster_rcnn_r50_fpn_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
model
=
dict
(
roi_head
=
dict
(
type
=
'DoubleHeadRoIHead'
,
reg_roi_scale_factor
=
1.3
,
bbox_head
=
dict
(
_delete_
=
True
,
type
=
'DoubleConvFCBBoxHead'
,
num_convs
=
4
,
num_fcs
=
2
,
in_channels
=
256
,
conv_out_channels
=
1024
,
fc_out_channels
=
1024
,
roi_feat_size
=
7
,
num_classes
=
80
,
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.1
,
0.1
,
0.2
,
0.2
]),
reg_class_agnostic
=
False
,
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
2.0
),
loss_bbox
=
dict
(
type
=
'SmoothL1Loss'
,
beta
=
1.0
,
loss_weight
=
2.0
))))
openmmlab_test/mmdetection-speed_xinpian/configs/double_heads/metafile.yml
0 → 100644
View file @
85529f35
Collections
:
-
Name
:
Rethinking Classification and Localization for Object Detection
Metadata
:
Training Data
:
COCO
Training Techniques
:
-
SGD with Momentum
-
Weight Decay
Training Resources
:
8x NVIDIA V100 GPUs
Architecture
:
-
FPN
-
RPN
-
ResNet
-
RoIAlign
Paper
:
https://arxiv.org/pdf/1904.06493
README
:
configs/double_heads/README.md
Models
:
-
Name
:
dh_faster_rcnn_r50_fpn_1x_coco
In Collection
:
Rethinking Classification and Localization for Object Detection
Config
:
configs/double_heads/dh_faster_rcnn_r50_fpn_1x_coco.py
Metadata
:
Training Memory (GB)
:
6.8
inference time (s/im)
:
0.10526
Epochs
:
12
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
40.0
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/double_heads/dh_faster_rcnn_r50_fpn_1x_coco/dh_faster_rcnn_r50_fpn_1x_coco_20200130-586b67df.pth
openmmlab_test/mmdetection-speed_xinpian/configs/dynamic_rcnn/README.md
0 → 100644
View file @
85529f35
# Dynamic R-CNN: Towards High Quality Object Detection via Dynamic Training
## Introduction
<!-- [ALGORITHM] -->
```
@article{DynamicRCNN,
author = {Hongkai Zhang and Hong Chang and Bingpeng Ma and Naiyan Wang and Xilin Chen},
title = {Dynamic {R-CNN}: Towards High Quality Object Detection via Dynamic Training},
journal = {arXiv preprint arXiv:2004.06002},
year = {2020}
}
```
## Results and Models
| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
|:---------:|:-------:|:-------:|:--------:|:--------------:|:------:|:------:|:--------:|
| R-50 | pytorch | 1x | 3.8 | | 38.9 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/dynamic_rcnn/dynamic_rcnn_r50_fpn_1x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/dynamic_rcnn/dynamic_rcnn_r50_fpn_1x/dynamic_rcnn_r50_fpn_1x-62a3f276.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/dynamic_rcnn/dynamic_rcnn_r50_fpn_1x/dynamic_rcnn_r50_fpn_1x_20200618_095048.log.json
)
|
openmmlab_test/mmdetection-speed_xinpian/configs/dynamic_rcnn/dynamic_rcnn_r50_fpn_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
model
=
dict
(
roi_head
=
dict
(
type
=
'DynamicRoIHead'
,
bbox_head
=
dict
(
type
=
'Shared2FCBBoxHead'
,
in_channels
=
256
,
fc_out_channels
=
1024
,
roi_feat_size
=
7
,
num_classes
=
80
,
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.1
,
0.1
,
0.2
,
0.2
]),
reg_class_agnostic
=
False
,
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'SmoothL1Loss'
,
beta
=
1.0
,
loss_weight
=
1.0
))),
train_cfg
=
dict
(
rpn_proposal
=
dict
(
nms
=
dict
(
iou_threshold
=
0.85
)),
rcnn
=
dict
(
dynamic_rcnn
=
dict
(
iou_topk
=
75
,
beta_topk
=
10
,
update_iter_interval
=
100
,
initial_iou
=
0.4
,
initial_beta
=
1.0
))),
test_cfg
=
dict
(
rpn
=
dict
(
nms
=
dict
(
iou_threshold
=
0.85
))))
openmmlab_test/mmdetection-speed_xinpian/configs/dynamic_rcnn/metafile.yml
0 → 100644
View file @
85529f35
Collections
:
-
Name
:
Dynamic R-CNN
Metadata
:
Training Data
:
COCO
Training Techniques
:
-
SGD with Momentum
-
Weight Decay
Training Resources
:
8x NVIDIA V100 GPUs
Architecture
:
-
Dynamic R-CNN
-
FPN
-
RPN
-
ResNet
-
RoIAlign
Paper
:
https://arxiv.org/pdf/2004.06002
README
:
configs/dynamic_rcnn/README.md
Models
:
-
Name
:
dynamic_rcnn_r50_fpn_1x_coco
In Collection
:
Dynamic R-CNN
Config
:
configs/dynamic_rcnn/dynamic_rcnn_r50_fpn_1x_coco.py
Metadata
:
Training Memory (GB)
:
3.8
Epochs
:
12
Results
:
-
Task
:
Object Detection
Dataset
:
COCO
Metrics
:
box AP
:
38.9
Weights
:
https://download.openmmlab.com/mmdetection/v2.0/dynamic_rcnn/dynamic_rcnn_r50_fpn_1x/dynamic_rcnn_r50_fpn_1x-62a3f276.pth
openmmlab_test/mmdetection-speed_xinpian/configs/empirical_attention/README.md
0 → 100644
View file @
85529f35
# An Empirical Study of Spatial Attention Mechanisms in Deep Networks
## Introduction
<!-- [ALGORITHM] -->
```
latex
@article
{
zhu2019empirical,
title=
{
An Empirical Study of Spatial Attention Mechanisms in Deep Networks
}
,
author=
{
Zhu, Xizhou and Cheng, Dazhi and Zhang, Zheng and Lin, Stephen and Dai, Jifeng
}
,
journal=
{
arXiv preprint arXiv:1904.05873
}
,
year=
{
2019
}
}
```
## Results and Models
| Backbone | Attention Component | DCN | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
|:---------:|:-------------------:|:----:|:-------:|:--------:|:--------------:|:------:|:------:|:--------:|
| R-50 | 1111 | N | 1x | 8.0 | 13.8 | 40.0 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/empirical_attention/faster_rcnn_r50_fpn_attention_1111_1x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/empirical_attention/faster_rcnn_r50_fpn_attention_1111_1x_coco/faster_rcnn_r50_fpn_attention_1111_1x_coco_20200130-403cccba.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/empirical_attention/faster_rcnn_r50_fpn_attention_1111_1x_coco/faster_rcnn_r50_fpn_attention_1111_1x_coco_20200130_210344.log.json
)
|
| R-50 | 0010 | N | 1x | 4.2 | 18.4 | 39.1 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/empirical_attention/faster_rcnn_r50_fpn_attention_0010_1x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/empirical_attention/faster_rcnn_r50_fpn_attention_0010_1x_coco/faster_rcnn_r50_fpn_attention_0010_1x_coco_20200130-7cb0c14d.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/empirical_attention/faster_rcnn_r50_fpn_attention_0010_1x_coco/faster_rcnn_r50_fpn_attention_0010_1x_coco_20200130_210125.log.json
)
|
| R-50 | 1111 | Y | 1x | 8.0 | 12.7 | 42.1 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/empirical_attention/faster_rcnn_r50_fpn_attention_1111_dcn_1x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/empirical_attention/faster_rcnn_r50_fpn_attention_1111_dcn_1x_coco/faster_rcnn_r50_fpn_attention_1111_dcn_1x_coco_20200130-8b2523a6.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/empirical_attention/faster_rcnn_r50_fpn_attention_1111_dcn_1x_coco/faster_rcnn_r50_fpn_attention_1111_dcn_1x_coco_20200130_204442.log.json
)
|
| R-50 | 0010 | Y | 1x | 4.2 | 17.1 | 42.0 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/empirical_attention/faster_rcnn_r50_fpn_attention_0010_dcn_1x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/empirical_attention/faster_rcnn_r50_fpn_attention_0010_dcn_1x_coco/faster_rcnn_r50_fpn_attention_0010_dcn_1x_coco_20200130-1a2e831d.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/empirical_attention/faster_rcnn_r50_fpn_attention_0010_dcn_1x_coco/faster_rcnn_r50_fpn_attention_0010_dcn_1x_coco_20200130_210410.log.json
)
|
openmmlab_test/mmdetection-speed_xinpian/configs/empirical_attention/faster_rcnn_r50_fpn_attention_0010_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
model
=
dict
(
backbone
=
dict
(
plugins
=
[
dict
(
cfg
=
dict
(
type
=
'GeneralizedAttention'
,
spatial_range
=-
1
,
num_heads
=
8
,
attention_type
=
'0010'
,
kv_stride
=
2
),
stages
=
(
False
,
False
,
True
,
True
),
position
=
'after_conv2'
)
]))
openmmlab_test/mmdetection-speed_xinpian/configs/empirical_attention/faster_rcnn_r50_fpn_attention_0010_dcn_1x_coco.py
0 → 100644
View file @
85529f35
_base_
=
'../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
model
=
dict
(
backbone
=
dict
(
plugins
=
[
dict
(
cfg
=
dict
(
type
=
'GeneralizedAttention'
,
spatial_range
=-
1
,
num_heads
=
8
,
attention_type
=
'0010'
,
kv_stride
=
2
),
stages
=
(
False
,
False
,
True
,
True
),
position
=
'after_conv2'
)
],
dcn
=
dict
(
type
=
'DCN'
,
deform_groups
=
1
,
fallback_on_stride
=
False
),
stage_with_dcn
=
(
False
,
True
,
True
,
True
)))
Prev
1
…
24
25
26
27
28
29
30
31
32
…
49
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment