Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
dcuai
dlexamples
Commits
85529f35
Commit
85529f35
authored
Jul 30, 2022
by
unknown
Browse files
添加openmmlab测试用例
parent
b21b0c01
Changes
977
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1438 additions
and
0 deletions
+1438
-0
openmmlab_test/mmdetection-speed_xinpian/configs/_base_/datasets/lvis_v1_instance.py
...speed_xinpian/configs/_base_/datasets/lvis_v1_instance.py
+24
-0
openmmlab_test/mmdetection-speed_xinpian/configs/_base_/datasets/voc0712.py
...etection-speed_xinpian/configs/_base_/datasets/voc0712.py
+55
-0
openmmlab_test/mmdetection-speed_xinpian/configs/_base_/datasets/wider_face.py
...ction-speed_xinpian/configs/_base_/datasets/wider_face.py
+63
-0
openmmlab_test/mmdetection-speed_xinpian/configs/_base_/default_runtime.py
...detection-speed_xinpian/configs/_base_/default_runtime.py
+16
-0
openmmlab_test/mmdetection-speed_xinpian/configs/_base_/models/cascade_mask_rcnn_r50_fpn.py
...inpian/configs/_base_/models/cascade_mask_rcnn_r50_fpn.py
+196
-0
openmmlab_test/mmdetection-speed_xinpian/configs/_base_/models/cascade_rcnn_r50_fpn.py
...eed_xinpian/configs/_base_/models/cascade_rcnn_r50_fpn.py
+179
-0
openmmlab_test/mmdetection-speed_xinpian/configs/_base_/models/fast_rcnn_r50_fpn.py
...-speed_xinpian/configs/_base_/models/fast_rcnn_r50_fpn.py
+62
-0
openmmlab_test/mmdetection-speed_xinpian/configs/_base_/models/faster_rcnn_r50_caffe_c4.py
...xinpian/configs/_base_/models/faster_rcnn_r50_caffe_c4.py
+112
-0
openmmlab_test/mmdetection-speed_xinpian/configs/_base_/models/faster_rcnn_r50_caffe_dc5.py
...inpian/configs/_base_/models/faster_rcnn_r50_caffe_dc5.py
+103
-0
openmmlab_test/mmdetection-speed_xinpian/configs/_base_/models/faster_rcnn_r50_fpn.py
...peed_xinpian/configs/_base_/models/faster_rcnn_r50_fpn.py
+108
-0
openmmlab_test/mmdetection-speed_xinpian/configs/_base_/models/mask_rcnn_r50_caffe_c4.py
...d_xinpian/configs/_base_/models/mask_rcnn_r50_caffe_c4.py
+123
-0
openmmlab_test/mmdetection-speed_xinpian/configs/_base_/models/mask_rcnn_r50_fpn.py
...-speed_xinpian/configs/_base_/models/mask_rcnn_r50_fpn.py
+120
-0
openmmlab_test/mmdetection-speed_xinpian/configs/_base_/models/retinanet_r50_fpn.py
...-speed_xinpian/configs/_base_/models/retinanet_r50_fpn.py
+60
-0
openmmlab_test/mmdetection-speed_xinpian/configs/_base_/models/rpn_r50_caffe_c4.py
...n-speed_xinpian/configs/_base_/models/rpn_r50_caffe_c4.py
+56
-0
openmmlab_test/mmdetection-speed_xinpian/configs/_base_/models/rpn_r50_fpn.py
...ection-speed_xinpian/configs/_base_/models/rpn_r50_fpn.py
+58
-0
openmmlab_test/mmdetection-speed_xinpian/configs/_base_/models/ssd300.py
...mmdetection-speed_xinpian/configs/_base_/models/ssd300.py
+51
-0
openmmlab_test/mmdetection-speed_xinpian/configs/_base_/schedules/schedule_1x.py
...ion-speed_xinpian/configs/_base_/schedules/schedule_1x.py
+11
-0
openmmlab_test/mmdetection-speed_xinpian/configs/_base_/schedules/schedule_20e.py
...on-speed_xinpian/configs/_base_/schedules/schedule_20e.py
+11
-0
openmmlab_test/mmdetection-speed_xinpian/configs/_base_/schedules/schedule_2x.py
...ion-speed_xinpian/configs/_base_/schedules/schedule_2x.py
+11
-0
openmmlab_test/mmdetection-speed_xinpian/configs/albu_example/README.md
.../mmdetection-speed_xinpian/configs/albu_example/README.md
+19
-0
No files found.
Too many changes to show.
To preserve performance only
977 of 977+
files are displayed.
Plain diff
Email patch
openmmlab_test/mmdetection-speed_xinpian/configs/_base_/datasets/lvis_v1_instance.py
0 → 100644
View file @
85529f35
# dataset settings
_base_
=
'coco_instance.py'
dataset_type
=
'LVISV1Dataset'
data_root
=
'data/lvis_v1/'
data
=
dict
(
samples_per_gpu
=
2
,
workers_per_gpu
=
2
,
train
=
dict
(
_delete_
=
True
,
type
=
'ClassBalancedDataset'
,
oversample_thr
=
1e-3
,
dataset
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/lvis_v1_train.json'
,
img_prefix
=
data_root
)),
val
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/lvis_v1_val.json'
,
img_prefix
=
data_root
),
test
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'annotations/lvis_v1_val.json'
,
img_prefix
=
data_root
))
evaluation
=
dict
(
metric
=
[
'bbox'
,
'segm'
])
openmmlab_test/mmdetection-speed_xinpian/configs/_base_/datasets/voc0712.py
0 → 100644
View file @
85529f35
# dataset settings
dataset_type
=
'VOCDataset'
data_root
=
'data/VOCdevkit/'
img_norm_cfg
=
dict
(
mean
=
[
123.675
,
116.28
,
103.53
],
std
=
[
58.395
,
57.12
,
57.375
],
to_rgb
=
True
)
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
),
dict
(
type
=
'Resize'
,
img_scale
=
(
1000
,
600
),
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
,
flip_ratio
=
0.5
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'DefaultFormatBundle'
),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_bboxes'
,
'gt_labels'
]),
]
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'MultiScaleFlipAug'
,
img_scale
=
(
1000
,
600
),
flip
=
False
,
transforms
=
[
dict
(
type
=
'Resize'
,
keep_ratio
=
True
),
dict
(
type
=
'RandomFlip'
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'Pad'
,
size_divisor
=
32
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
]),
])
]
data
=
dict
(
samples_per_gpu
=
2
,
workers_per_gpu
=
2
,
train
=
dict
(
type
=
'RepeatDataset'
,
times
=
3
,
dataset
=
dict
(
type
=
dataset_type
,
ann_file
=
[
data_root
+
'VOC2007/ImageSets/Main/trainval.txt'
,
data_root
+
'VOC2012/ImageSets/Main/trainval.txt'
],
img_prefix
=
[
data_root
+
'VOC2007/'
,
data_root
+
'VOC2012/'
],
pipeline
=
train_pipeline
)),
val
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'VOC2007/ImageSets/Main/test.txt'
,
img_prefix
=
data_root
+
'VOC2007/'
,
pipeline
=
test_pipeline
),
test
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'VOC2007/ImageSets/Main/test.txt'
,
img_prefix
=
data_root
+
'VOC2007/'
,
pipeline
=
test_pipeline
))
evaluation
=
dict
(
interval
=
1
,
metric
=
'mAP'
)
openmmlab_test/mmdetection-speed_xinpian/configs/_base_/datasets/wider_face.py
0 → 100644
View file @
85529f35
# dataset settings
dataset_type
=
'WIDERFaceDataset'
data_root
=
'data/WIDERFace/'
img_norm_cfg
=
dict
(
mean
=
[
123.675
,
116.28
,
103.53
],
std
=
[
1
,
1
,
1
],
to_rgb
=
True
)
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
,
to_float32
=
True
),
dict
(
type
=
'LoadAnnotations'
,
with_bbox
=
True
),
dict
(
type
=
'PhotoMetricDistortion'
,
brightness_delta
=
32
,
contrast_range
=
(
0.5
,
1.5
),
saturation_range
=
(
0.5
,
1.5
),
hue_delta
=
18
),
dict
(
type
=
'Expand'
,
mean
=
img_norm_cfg
[
'mean'
],
to_rgb
=
img_norm_cfg
[
'to_rgb'
],
ratio_range
=
(
1
,
4
)),
dict
(
type
=
'MinIoURandomCrop'
,
min_ious
=
(
0.1
,
0.3
,
0.5
,
0.7
,
0.9
),
min_crop_size
=
0.3
),
dict
(
type
=
'Resize'
,
img_scale
=
(
300
,
300
),
keep_ratio
=
False
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'RandomFlip'
,
flip_ratio
=
0.5
),
dict
(
type
=
'DefaultFormatBundle'
),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_bboxes'
,
'gt_labels'
]),
]
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'MultiScaleFlipAug'
,
img_scale
=
(
300
,
300
),
flip
=
False
,
transforms
=
[
dict
(
type
=
'Resize'
,
keep_ratio
=
False
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
]),
])
]
data
=
dict
(
samples_per_gpu
=
60
,
workers_per_gpu
=
2
,
train
=
dict
(
type
=
'RepeatDataset'
,
times
=
2
,
dataset
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'train.txt'
,
img_prefix
=
data_root
+
'WIDER_train/'
,
min_size
=
17
,
pipeline
=
train_pipeline
)),
val
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'val.txt'
,
img_prefix
=
data_root
+
'WIDER_val/'
,
pipeline
=
test_pipeline
),
test
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'val.txt'
,
img_prefix
=
data_root
+
'WIDER_val/'
,
pipeline
=
test_pipeline
))
openmmlab_test/mmdetection-speed_xinpian/configs/_base_/default_runtime.py
0 → 100644
View file @
85529f35
checkpoint_config
=
dict
(
interval
=
1
)
# yapf:disable
log_config
=
dict
(
interval
=
50
,
hooks
=
[
dict
(
type
=
'TextLoggerHook'
),
# dict(type='TensorboardLoggerHook')
])
# yapf:enable
custom_hooks
=
[
dict
(
type
=
'NumClassCheckHook'
)]
dist_params
=
dict
(
backend
=
'nccl'
)
log_level
=
'INFO'
load_from
=
None
resume_from
=
None
workflow
=
[(
'train'
,
1
)]
openmmlab_test/mmdetection-speed_xinpian/configs/_base_/models/cascade_mask_rcnn_r50_fpn.py
0 → 100644
View file @
85529f35
# model settings
model
=
dict
(
type
=
'CascadeRCNN'
,
pretrained
=
'torchvision://resnet50'
,
backbone
=
dict
(
type
=
'ResNet'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
),
norm_eval
=
True
,
style
=
'pytorch'
),
neck
=
dict
(
type
=
'FPN'
,
in_channels
=
[
256
,
512
,
1024
,
2048
],
out_channels
=
256
,
num_outs
=
5
),
rpn_head
=
dict
(
type
=
'RPNHead'
,
in_channels
=
256
,
feat_channels
=
256
,
anchor_generator
=
dict
(
type
=
'AnchorGenerator'
,
scales
=
[
8
],
ratios
=
[
0.5
,
1.0
,
2.0
],
strides
=
[
4
,
8
,
16
,
32
,
64
]),
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[.
0
,
.
0
,
.
0
,
.
0
],
target_stds
=
[
1.0
,
1.0
,
1.0
,
1.0
]),
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
True
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'SmoothL1Loss'
,
beta
=
1.0
/
9.0
,
loss_weight
=
1.0
)),
roi_head
=
dict
(
type
=
'CascadeRoIHead'
,
num_stages
=
3
,
stage_loss_weights
=
[
1
,
0.5
,
0.25
],
bbox_roi_extractor
=
dict
(
type
=
'SingleRoIExtractor'
,
roi_layer
=
dict
(
type
=
'RoIAlign'
,
output_size
=
7
,
sampling_ratio
=
0
),
out_channels
=
256
,
featmap_strides
=
[
4
,
8
,
16
,
32
]),
bbox_head
=
[
dict
(
type
=
'Shared2FCBBoxHead'
,
in_channels
=
256
,
fc_out_channels
=
1024
,
roi_feat_size
=
7
,
num_classes
=
80
,
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.1
,
0.1
,
0.2
,
0.2
]),
reg_class_agnostic
=
True
,
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'SmoothL1Loss'
,
beta
=
1.0
,
loss_weight
=
1.0
)),
dict
(
type
=
'Shared2FCBBoxHead'
,
in_channels
=
256
,
fc_out_channels
=
1024
,
roi_feat_size
=
7
,
num_classes
=
80
,
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.05
,
0.05
,
0.1
,
0.1
]),
reg_class_agnostic
=
True
,
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'SmoothL1Loss'
,
beta
=
1.0
,
loss_weight
=
1.0
)),
dict
(
type
=
'Shared2FCBBoxHead'
,
in_channels
=
256
,
fc_out_channels
=
1024
,
roi_feat_size
=
7
,
num_classes
=
80
,
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.033
,
0.033
,
0.067
,
0.067
]),
reg_class_agnostic
=
True
,
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'SmoothL1Loss'
,
beta
=
1.0
,
loss_weight
=
1.0
))
],
mask_roi_extractor
=
dict
(
type
=
'SingleRoIExtractor'
,
roi_layer
=
dict
(
type
=
'RoIAlign'
,
output_size
=
14
,
sampling_ratio
=
0
),
out_channels
=
256
,
featmap_strides
=
[
4
,
8
,
16
,
32
]),
mask_head
=
dict
(
type
=
'FCNMaskHead'
,
num_convs
=
4
,
in_channels
=
256
,
conv_out_channels
=
256
,
num_classes
=
80
,
loss_mask
=
dict
(
type
=
'CrossEntropyLoss'
,
use_mask
=
True
,
loss_weight
=
1.0
))),
# model training and testing settings
train_cfg
=
dict
(
rpn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.7
,
neg_iou_thr
=
0.3
,
min_pos_iou
=
0.3
,
match_low_quality
=
True
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
256
,
pos_fraction
=
0.5
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
False
),
allowed_border
=
0
,
pos_weight
=-
1
,
debug
=
False
),
rpn_proposal
=
dict
(
nms_pre
=
2000
,
max_per_img
=
2000
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.7
),
min_bbox_size
=
0
),
rcnn
=
[
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.5
,
neg_iou_thr
=
0.5
,
min_pos_iou
=
0.5
,
match_low_quality
=
False
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
),
mask_size
=
28
,
pos_weight
=-
1
,
debug
=
False
),
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.6
,
neg_iou_thr
=
0.6
,
min_pos_iou
=
0.6
,
match_low_quality
=
False
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
),
mask_size
=
28
,
pos_weight
=-
1
,
debug
=
False
),
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.7
,
neg_iou_thr
=
0.7
,
min_pos_iou
=
0.7
,
match_low_quality
=
False
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
),
mask_size
=
28
,
pos_weight
=-
1
,
debug
=
False
)
]),
test_cfg
=
dict
(
rpn
=
dict
(
nms_pre
=
1000
,
max_per_img
=
1000
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.7
),
min_bbox_size
=
0
),
rcnn
=
dict
(
score_thr
=
0.05
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.5
),
max_per_img
=
100
,
mask_thr_binary
=
0.5
)))
openmmlab_test/mmdetection-speed_xinpian/configs/_base_/models/cascade_rcnn_r50_fpn.py
0 → 100644
View file @
85529f35
# model settings
model
=
dict
(
type
=
'CascadeRCNN'
,
pretrained
=
'torchvision://resnet50'
,
backbone
=
dict
(
type
=
'ResNet'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
),
norm_eval
=
True
,
style
=
'pytorch'
),
neck
=
dict
(
type
=
'FPN'
,
in_channels
=
[
256
,
512
,
1024
,
2048
],
out_channels
=
256
,
num_outs
=
5
),
rpn_head
=
dict
(
type
=
'RPNHead'
,
in_channels
=
256
,
feat_channels
=
256
,
anchor_generator
=
dict
(
type
=
'AnchorGenerator'
,
scales
=
[
8
],
ratios
=
[
0.5
,
1.0
,
2.0
],
strides
=
[
4
,
8
,
16
,
32
,
64
]),
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[.
0
,
.
0
,
.
0
,
.
0
],
target_stds
=
[
1.0
,
1.0
,
1.0
,
1.0
]),
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
True
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'SmoothL1Loss'
,
beta
=
1.0
/
9.0
,
loss_weight
=
1.0
)),
roi_head
=
dict
(
type
=
'CascadeRoIHead'
,
num_stages
=
3
,
stage_loss_weights
=
[
1
,
0.5
,
0.25
],
bbox_roi_extractor
=
dict
(
type
=
'SingleRoIExtractor'
,
roi_layer
=
dict
(
type
=
'RoIAlign'
,
output_size
=
7
,
sampling_ratio
=
0
),
out_channels
=
256
,
featmap_strides
=
[
4
,
8
,
16
,
32
]),
bbox_head
=
[
dict
(
type
=
'Shared2FCBBoxHead'
,
in_channels
=
256
,
fc_out_channels
=
1024
,
roi_feat_size
=
7
,
num_classes
=
80
,
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.1
,
0.1
,
0.2
,
0.2
]),
reg_class_agnostic
=
True
,
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'SmoothL1Loss'
,
beta
=
1.0
,
loss_weight
=
1.0
)),
dict
(
type
=
'Shared2FCBBoxHead'
,
in_channels
=
256
,
fc_out_channels
=
1024
,
roi_feat_size
=
7
,
num_classes
=
80
,
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.05
,
0.05
,
0.1
,
0.1
]),
reg_class_agnostic
=
True
,
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'SmoothL1Loss'
,
beta
=
1.0
,
loss_weight
=
1.0
)),
dict
(
type
=
'Shared2FCBBoxHead'
,
in_channels
=
256
,
fc_out_channels
=
1024
,
roi_feat_size
=
7
,
num_classes
=
80
,
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.033
,
0.033
,
0.067
,
0.067
]),
reg_class_agnostic
=
True
,
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'SmoothL1Loss'
,
beta
=
1.0
,
loss_weight
=
1.0
))
]),
# model training and testing settings
train_cfg
=
dict
(
rpn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.7
,
neg_iou_thr
=
0.3
,
min_pos_iou
=
0.3
,
match_low_quality
=
True
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
256
,
pos_fraction
=
0.5
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
False
),
allowed_border
=
0
,
pos_weight
=-
1
,
debug
=
False
),
rpn_proposal
=
dict
(
nms_pre
=
2000
,
max_per_img
=
2000
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.7
),
min_bbox_size
=
0
),
rcnn
=
[
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.5
,
neg_iou_thr
=
0.5
,
min_pos_iou
=
0.5
,
match_low_quality
=
False
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
),
pos_weight
=-
1
,
debug
=
False
),
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.6
,
neg_iou_thr
=
0.6
,
min_pos_iou
=
0.6
,
match_low_quality
=
False
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
),
pos_weight
=-
1
,
debug
=
False
),
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.7
,
neg_iou_thr
=
0.7
,
min_pos_iou
=
0.7
,
match_low_quality
=
False
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
),
pos_weight
=-
1
,
debug
=
False
)
]),
test_cfg
=
dict
(
rpn
=
dict
(
nms_pre
=
1000
,
max_per_img
=
1000
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.7
),
min_bbox_size
=
0
),
rcnn
=
dict
(
score_thr
=
0.05
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.5
),
max_per_img
=
100
)))
openmmlab_test/mmdetection-speed_xinpian/configs/_base_/models/fast_rcnn_r50_fpn.py
0 → 100644
View file @
85529f35
# model settings
model
=
dict
(
type
=
'FastRCNN'
,
pretrained
=
'torchvision://resnet50'
,
backbone
=
dict
(
type
=
'ResNet'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
),
norm_eval
=
True
,
style
=
'pytorch'
),
neck
=
dict
(
type
=
'FPN'
,
in_channels
=
[
256
,
512
,
1024
,
2048
],
out_channels
=
256
,
num_outs
=
5
),
roi_head
=
dict
(
type
=
'StandardRoIHead'
,
bbox_roi_extractor
=
dict
(
type
=
'SingleRoIExtractor'
,
roi_layer
=
dict
(
type
=
'RoIAlign'
,
output_size
=
7
,
sampling_ratio
=
0
),
out_channels
=
256
,
featmap_strides
=
[
4
,
8
,
16
,
32
]),
bbox_head
=
dict
(
type
=
'Shared2FCBBoxHead'
,
in_channels
=
256
,
fc_out_channels
=
1024
,
roi_feat_size
=
7
,
num_classes
=
80
,
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.1
,
0.1
,
0.2
,
0.2
]),
reg_class_agnostic
=
False
,
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'L1Loss'
,
loss_weight
=
1.0
))),
# model training and testing settings
train_cfg
=
dict
(
rcnn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.5
,
neg_iou_thr
=
0.5
,
min_pos_iou
=
0.5
,
match_low_quality
=
False
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
),
pos_weight
=-
1
,
debug
=
False
)),
test_cfg
=
dict
(
rcnn
=
dict
(
score_thr
=
0.05
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.5
),
max_per_img
=
100
)))
openmmlab_test/mmdetection-speed_xinpian/configs/_base_/models/faster_rcnn_r50_caffe_c4.py
0 → 100644
View file @
85529f35
# model settings
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
False
)
model
=
dict
(
type
=
'FasterRCNN'
,
pretrained
=
'open-mmlab://detectron2/resnet50_caffe'
,
backbone
=
dict
(
type
=
'ResNet'
,
depth
=
50
,
num_stages
=
3
,
strides
=
(
1
,
2
,
2
),
dilations
=
(
1
,
1
,
1
),
out_indices
=
(
2
,
),
frozen_stages
=
1
,
norm_cfg
=
norm_cfg
,
norm_eval
=
True
,
style
=
'caffe'
),
rpn_head
=
dict
(
type
=
'RPNHead'
,
in_channels
=
1024
,
feat_channels
=
1024
,
anchor_generator
=
dict
(
type
=
'AnchorGenerator'
,
scales
=
[
2
,
4
,
8
,
16
,
32
],
ratios
=
[
0.5
,
1.0
,
2.0
],
strides
=
[
16
]),
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[.
0
,
.
0
,
.
0
,
.
0
],
target_stds
=
[
1.0
,
1.0
,
1.0
,
1.0
]),
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
True
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'L1Loss'
,
loss_weight
=
1.0
)),
roi_head
=
dict
(
type
=
'StandardRoIHead'
,
shared_head
=
dict
(
type
=
'ResLayer'
,
depth
=
50
,
stage
=
3
,
stride
=
2
,
dilation
=
1
,
style
=
'caffe'
,
norm_cfg
=
norm_cfg
,
norm_eval
=
True
),
bbox_roi_extractor
=
dict
(
type
=
'SingleRoIExtractor'
,
roi_layer
=
dict
(
type
=
'RoIAlign'
,
output_size
=
14
,
sampling_ratio
=
0
),
out_channels
=
1024
,
featmap_strides
=
[
16
]),
bbox_head
=
dict
(
type
=
'BBoxHead'
,
with_avg_pool
=
True
,
roi_feat_size
=
7
,
in_channels
=
2048
,
num_classes
=
80
,
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.1
,
0.1
,
0.2
,
0.2
]),
reg_class_agnostic
=
False
,
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'L1Loss'
,
loss_weight
=
1.0
))),
# model training and testing settings
train_cfg
=
dict
(
rpn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.7
,
neg_iou_thr
=
0.3
,
min_pos_iou
=
0.3
,
match_low_quality
=
True
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
256
,
pos_fraction
=
0.5
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
False
),
allowed_border
=
0
,
pos_weight
=-
1
,
debug
=
False
),
rpn_proposal
=
dict
(
nms_pre
=
12000
,
max_per_img
=
2000
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.7
),
min_bbox_size
=
0
),
rcnn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.5
,
neg_iou_thr
=
0.5
,
min_pos_iou
=
0.5
,
match_low_quality
=
False
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
),
pos_weight
=-
1
,
debug
=
False
)),
test_cfg
=
dict
(
rpn
=
dict
(
nms_pre
=
6000
,
max_per_img
=
1000
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.7
),
min_bbox_size
=
0
),
rcnn
=
dict
(
score_thr
=
0.05
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.5
),
max_per_img
=
100
)))
openmmlab_test/mmdetection-speed_xinpian/configs/_base_/models/faster_rcnn_r50_caffe_dc5.py
0 → 100644
View file @
85529f35
# model settings
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
False
)
model
=
dict
(
type
=
'FasterRCNN'
,
pretrained
=
'open-mmlab://detectron2/resnet50_caffe'
,
backbone
=
dict
(
type
=
'ResNet'
,
depth
=
50
,
num_stages
=
4
,
strides
=
(
1
,
2
,
2
,
1
),
dilations
=
(
1
,
1
,
1
,
2
),
out_indices
=
(
3
,
),
frozen_stages
=
1
,
norm_cfg
=
norm_cfg
,
norm_eval
=
True
,
style
=
'caffe'
),
rpn_head
=
dict
(
type
=
'RPNHead'
,
in_channels
=
2048
,
feat_channels
=
2048
,
anchor_generator
=
dict
(
type
=
'AnchorGenerator'
,
scales
=
[
2
,
4
,
8
,
16
,
32
],
ratios
=
[
0.5
,
1.0
,
2.0
],
strides
=
[
16
]),
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[.
0
,
.
0
,
.
0
,
.
0
],
target_stds
=
[
1.0
,
1.0
,
1.0
,
1.0
]),
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
True
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'L1Loss'
,
loss_weight
=
1.0
)),
roi_head
=
dict
(
type
=
'StandardRoIHead'
,
bbox_roi_extractor
=
dict
(
type
=
'SingleRoIExtractor'
,
roi_layer
=
dict
(
type
=
'RoIAlign'
,
output_size
=
7
,
sampling_ratio
=
0
),
out_channels
=
2048
,
featmap_strides
=
[
16
]),
bbox_head
=
dict
(
type
=
'Shared2FCBBoxHead'
,
in_channels
=
2048
,
fc_out_channels
=
1024
,
roi_feat_size
=
7
,
num_classes
=
80
,
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.1
,
0.1
,
0.2
,
0.2
]),
reg_class_agnostic
=
False
,
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'L1Loss'
,
loss_weight
=
1.0
))),
# model training and testing settings
train_cfg
=
dict
(
rpn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.7
,
neg_iou_thr
=
0.3
,
min_pos_iou
=
0.3
,
match_low_quality
=
True
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
256
,
pos_fraction
=
0.5
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
False
),
allowed_border
=
0
,
pos_weight
=-
1
,
debug
=
False
),
rpn_proposal
=
dict
(
nms_pre
=
12000
,
max_per_img
=
2000
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.7
),
min_bbox_size
=
0
),
rcnn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.5
,
neg_iou_thr
=
0.5
,
min_pos_iou
=
0.5
,
match_low_quality
=
False
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
),
pos_weight
=-
1
,
debug
=
False
)),
test_cfg
=
dict
(
rpn
=
dict
(
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.7
),
nms_pre
=
6000
,
max_per_img
=
1000
,
min_bbox_size
=
0
),
rcnn
=
dict
(
score_thr
=
0.05
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.5
),
max_per_img
=
100
)))
openmmlab_test/mmdetection-speed_xinpian/configs/_base_/models/faster_rcnn_r50_fpn.py
0 → 100644
View file @
85529f35
# model settings
model
=
dict
(
type
=
'FasterRCNN'
,
pretrained
=
'torchvision://resnet50'
,
backbone
=
dict
(
type
=
'ResNet'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
),
norm_eval
=
True
,
style
=
'pytorch'
),
neck
=
dict
(
type
=
'FPN'
,
in_channels
=
[
256
,
512
,
1024
,
2048
],
out_channels
=
256
,
num_outs
=
5
),
rpn_head
=
dict
(
type
=
'RPNHead'
,
in_channels
=
256
,
feat_channels
=
256
,
anchor_generator
=
dict
(
type
=
'AnchorGenerator'
,
scales
=
[
8
],
ratios
=
[
0.5
,
1.0
,
2.0
],
strides
=
[
4
,
8
,
16
,
32
,
64
]),
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[.
0
,
.
0
,
.
0
,
.
0
],
target_stds
=
[
1.0
,
1.0
,
1.0
,
1.0
]),
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
True
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'L1Loss'
,
loss_weight
=
1.0
)),
roi_head
=
dict
(
type
=
'StandardRoIHead'
,
bbox_roi_extractor
=
dict
(
type
=
'SingleRoIExtractor'
,
roi_layer
=
dict
(
type
=
'RoIAlign'
,
output_size
=
7
,
sampling_ratio
=
0
),
out_channels
=
256
,
featmap_strides
=
[
4
,
8
,
16
,
32
]),
bbox_head
=
dict
(
type
=
'Shared2FCBBoxHead'
,
in_channels
=
256
,
fc_out_channels
=
1024
,
roi_feat_size
=
7
,
num_classes
=
80
,
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.1
,
0.1
,
0.2
,
0.2
]),
reg_class_agnostic
=
False
,
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'L1Loss'
,
loss_weight
=
1.0
))),
# model training and testing settings
train_cfg
=
dict
(
rpn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.7
,
neg_iou_thr
=
0.3
,
min_pos_iou
=
0.3
,
match_low_quality
=
True
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
256
,
pos_fraction
=
0.5
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
False
),
allowed_border
=-
1
,
pos_weight
=-
1
,
debug
=
False
),
rpn_proposal
=
dict
(
nms_pre
=
2000
,
max_per_img
=
1000
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.7
),
min_bbox_size
=
0
),
rcnn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.5
,
neg_iou_thr
=
0.5
,
min_pos_iou
=
0.5
,
match_low_quality
=
False
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
),
pos_weight
=-
1
,
debug
=
False
)),
test_cfg
=
dict
(
rpn
=
dict
(
nms_pre
=
1000
,
max_per_img
=
1000
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.7
),
min_bbox_size
=
0
),
rcnn
=
dict
(
score_thr
=
0.05
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.5
),
max_per_img
=
100
)
# soft-nms is also supported for rcnn testing
# e.g., nms=dict(type='soft_nms', iou_threshold=0.5, min_score=0.05)
))
openmmlab_test/mmdetection-speed_xinpian/configs/_base_/models/mask_rcnn_r50_caffe_c4.py
0 → 100644
View file @
85529f35
# model settings
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
False
)
model
=
dict
(
type
=
'MaskRCNN'
,
pretrained
=
'open-mmlab://detectron2/resnet50_caffe'
,
backbone
=
dict
(
type
=
'ResNet'
,
depth
=
50
,
num_stages
=
3
,
strides
=
(
1
,
2
,
2
),
dilations
=
(
1
,
1
,
1
),
out_indices
=
(
2
,
),
frozen_stages
=
1
,
norm_cfg
=
norm_cfg
,
norm_eval
=
True
,
style
=
'caffe'
),
rpn_head
=
dict
(
type
=
'RPNHead'
,
in_channels
=
1024
,
feat_channels
=
1024
,
anchor_generator
=
dict
(
type
=
'AnchorGenerator'
,
scales
=
[
2
,
4
,
8
,
16
,
32
],
ratios
=
[
0.5
,
1.0
,
2.0
],
strides
=
[
16
]),
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[.
0
,
.
0
,
.
0
,
.
0
],
target_stds
=
[
1.0
,
1.0
,
1.0
,
1.0
]),
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
True
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'L1Loss'
,
loss_weight
=
1.0
)),
roi_head
=
dict
(
type
=
'StandardRoIHead'
,
shared_head
=
dict
(
type
=
'ResLayer'
,
depth
=
50
,
stage
=
3
,
stride
=
2
,
dilation
=
1
,
style
=
'caffe'
,
norm_cfg
=
norm_cfg
,
norm_eval
=
True
),
bbox_roi_extractor
=
dict
(
type
=
'SingleRoIExtractor'
,
roi_layer
=
dict
(
type
=
'RoIAlign'
,
output_size
=
14
,
sampling_ratio
=
0
),
out_channels
=
1024
,
featmap_strides
=
[
16
]),
bbox_head
=
dict
(
type
=
'BBoxHead'
,
with_avg_pool
=
True
,
roi_feat_size
=
7
,
in_channels
=
2048
,
num_classes
=
80
,
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.1
,
0.1
,
0.2
,
0.2
]),
reg_class_agnostic
=
False
,
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'L1Loss'
,
loss_weight
=
1.0
)),
mask_roi_extractor
=
None
,
mask_head
=
dict
(
type
=
'FCNMaskHead'
,
num_convs
=
0
,
in_channels
=
2048
,
conv_out_channels
=
256
,
num_classes
=
80
,
loss_mask
=
dict
(
type
=
'CrossEntropyLoss'
,
use_mask
=
True
,
loss_weight
=
1.0
))),
# model training and testing settings
train_cfg
=
dict
(
rpn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.7
,
neg_iou_thr
=
0.3
,
min_pos_iou
=
0.3
,
match_low_quality
=
True
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
256
,
pos_fraction
=
0.5
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
False
),
allowed_border
=
0
,
pos_weight
=-
1
,
debug
=
False
),
rpn_proposal
=
dict
(
nms_pre
=
12000
,
max_per_img
=
2000
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.7
),
min_bbox_size
=
0
),
rcnn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.5
,
neg_iou_thr
=
0.5
,
min_pos_iou
=
0.5
,
match_low_quality
=
False
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
),
mask_size
=
14
,
pos_weight
=-
1
,
debug
=
False
)),
test_cfg
=
dict
(
rpn
=
dict
(
nms_pre
=
6000
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.7
),
max_per_img
=
1000
,
min_bbox_size
=
0
),
rcnn
=
dict
(
score_thr
=
0.05
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.5
),
max_per_img
=
100
,
mask_thr_binary
=
0.5
)))
openmmlab_test/mmdetection-speed_xinpian/configs/_base_/models/mask_rcnn_r50_fpn.py
0 → 100644
View file @
85529f35
# model settings
model
=
dict
(
type
=
'MaskRCNN'
,
pretrained
=
'torchvision://resnet50'
,
backbone
=
dict
(
type
=
'ResNet'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
),
norm_eval
=
True
,
style
=
'pytorch'
),
neck
=
dict
(
type
=
'FPN'
,
in_channels
=
[
256
,
512
,
1024
,
2048
],
out_channels
=
256
,
num_outs
=
5
),
rpn_head
=
dict
(
type
=
'RPNHead'
,
in_channels
=
256
,
feat_channels
=
256
,
anchor_generator
=
dict
(
type
=
'AnchorGenerator'
,
scales
=
[
8
],
ratios
=
[
0.5
,
1.0
,
2.0
],
strides
=
[
4
,
8
,
16
,
32
,
64
]),
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[.
0
,
.
0
,
.
0
,
.
0
],
target_stds
=
[
1.0
,
1.0
,
1.0
,
1.0
]),
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
True
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'L1Loss'
,
loss_weight
=
1.0
)),
roi_head
=
dict
(
type
=
'StandardRoIHead'
,
bbox_roi_extractor
=
dict
(
type
=
'SingleRoIExtractor'
,
roi_layer
=
dict
(
type
=
'RoIAlign'
,
output_size
=
7
,
sampling_ratio
=
0
),
out_channels
=
256
,
featmap_strides
=
[
4
,
8
,
16
,
32
]),
bbox_head
=
dict
(
type
=
'Shared2FCBBoxHead'
,
in_channels
=
256
,
fc_out_channels
=
1024
,
roi_feat_size
=
7
,
num_classes
=
80
,
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.1
,
0.1
,
0.2
,
0.2
]),
reg_class_agnostic
=
False
,
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
False
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'L1Loss'
,
loss_weight
=
1.0
)),
mask_roi_extractor
=
dict
(
type
=
'SingleRoIExtractor'
,
roi_layer
=
dict
(
type
=
'RoIAlign'
,
output_size
=
14
,
sampling_ratio
=
0
),
out_channels
=
256
,
featmap_strides
=
[
4
,
8
,
16
,
32
]),
mask_head
=
dict
(
type
=
'FCNMaskHead'
,
num_convs
=
4
,
in_channels
=
256
,
conv_out_channels
=
256
,
num_classes
=
80
,
loss_mask
=
dict
(
type
=
'CrossEntropyLoss'
,
use_mask
=
True
,
loss_weight
=
1.0
))),
# model training and testing settings
train_cfg
=
dict
(
rpn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.7
,
neg_iou_thr
=
0.3
,
min_pos_iou
=
0.3
,
match_low_quality
=
True
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
256
,
pos_fraction
=
0.5
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
False
),
allowed_border
=-
1
,
pos_weight
=-
1
,
debug
=
False
),
rpn_proposal
=
dict
(
nms_pre
=
2000
,
max_per_img
=
1000
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.7
),
min_bbox_size
=
0
),
rcnn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.5
,
neg_iou_thr
=
0.5
,
min_pos_iou
=
0.5
,
match_low_quality
=
True
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
),
mask_size
=
28
,
pos_weight
=-
1
,
debug
=
False
)),
test_cfg
=
dict
(
rpn
=
dict
(
nms_pre
=
1000
,
max_per_img
=
1000
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.7
),
min_bbox_size
=
0
),
rcnn
=
dict
(
score_thr
=
0.05
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.5
),
max_per_img
=
100
,
mask_thr_binary
=
0.5
)))
openmmlab_test/mmdetection-speed_xinpian/configs/_base_/models/retinanet_r50_fpn.py
0 → 100644
View file @
85529f35
# model settings
model
=
dict
(
type
=
'RetinaNet'
,
pretrained
=
'torchvision://resnet50'
,
backbone
=
dict
(
type
=
'ResNet'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
),
norm_eval
=
True
,
style
=
'pytorch'
),
neck
=
dict
(
type
=
'FPN'
,
in_channels
=
[
256
,
512
,
1024
,
2048
],
out_channels
=
256
,
start_level
=
1
,
add_extra_convs
=
'on_input'
,
num_outs
=
5
),
bbox_head
=
dict
(
type
=
'RetinaHead'
,
num_classes
=
80
,
in_channels
=
256
,
stacked_convs
=
4
,
feat_channels
=
256
,
anchor_generator
=
dict
(
type
=
'AnchorGenerator'
,
octave_base_scale
=
4
,
scales_per_octave
=
3
,
ratios
=
[
0.5
,
1.0
,
2.0
],
strides
=
[
8
,
16
,
32
,
64
,
128
]),
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[.
0
,
.
0
,
.
0
,
.
0
],
target_stds
=
[
1.0
,
1.0
,
1.0
,
1.0
]),
loss_cls
=
dict
(
type
=
'FocalLoss'
,
use_sigmoid
=
True
,
gamma
=
2.0
,
alpha
=
0.25
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'L1Loss'
,
loss_weight
=
1.0
)),
# model training and testing settings
train_cfg
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.5
,
neg_iou_thr
=
0.4
,
min_pos_iou
=
0
,
ignore_iof_thr
=-
1
),
allowed_border
=-
1
,
pos_weight
=-
1
,
debug
=
False
),
test_cfg
=
dict
(
nms_pre
=
1000
,
min_bbox_size
=
0
,
score_thr
=
0.05
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.5
),
max_per_img
=
100
))
openmmlab_test/mmdetection-speed_xinpian/configs/_base_/models/rpn_r50_caffe_c4.py
0 → 100644
View file @
85529f35
# model settings
model
=
dict
(
type
=
'RPN'
,
pretrained
=
'open-mmlab://detectron2/resnet50_caffe'
,
backbone
=
dict
(
type
=
'ResNet'
,
depth
=
50
,
num_stages
=
3
,
strides
=
(
1
,
2
,
2
),
dilations
=
(
1
,
1
,
1
),
out_indices
=
(
2
,
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
False
),
norm_eval
=
True
,
style
=
'caffe'
),
neck
=
None
,
rpn_head
=
dict
(
type
=
'RPNHead'
,
in_channels
=
1024
,
feat_channels
=
1024
,
anchor_generator
=
dict
(
type
=
'AnchorGenerator'
,
scales
=
[
2
,
4
,
8
,
16
,
32
],
ratios
=
[
0.5
,
1.0
,
2.0
],
strides
=
[
16
]),
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[.
0
,
.
0
,
.
0
,
.
0
],
target_stds
=
[
1.0
,
1.0
,
1.0
,
1.0
]),
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
True
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'L1Loss'
,
loss_weight
=
1.0
)),
# model training and testing settings
train_cfg
=
dict
(
rpn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.7
,
neg_iou_thr
=
0.3
,
min_pos_iou
=
0.3
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
256
,
pos_fraction
=
0.5
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
False
),
allowed_border
=
0
,
pos_weight
=-
1
,
debug
=
False
)),
test_cfg
=
dict
(
rpn
=
dict
(
nms_pre
=
12000
,
max_per_img
=
2000
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.7
),
min_bbox_size
=
0
)))
openmmlab_test/mmdetection-speed_xinpian/configs/_base_/models/rpn_r50_fpn.py
0 → 100644
View file @
85529f35
# model settings
model
=
dict
(
type
=
'RPN'
,
pretrained
=
'torchvision://resnet50'
,
backbone
=
dict
(
type
=
'ResNet'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
norm_cfg
=
dict
(
type
=
'BN'
,
requires_grad
=
True
),
norm_eval
=
True
,
style
=
'pytorch'
),
neck
=
dict
(
type
=
'FPN'
,
in_channels
=
[
256
,
512
,
1024
,
2048
],
out_channels
=
256
,
num_outs
=
5
),
rpn_head
=
dict
(
type
=
'RPNHead'
,
in_channels
=
256
,
feat_channels
=
256
,
anchor_generator
=
dict
(
type
=
'AnchorGenerator'
,
scales
=
[
8
],
ratios
=
[
0.5
,
1.0
,
2.0
],
strides
=
[
4
,
8
,
16
,
32
,
64
]),
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[.
0
,
.
0
,
.
0
,
.
0
],
target_stds
=
[
1.0
,
1.0
,
1.0
,
1.0
]),
loss_cls
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
True
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'L1Loss'
,
loss_weight
=
1.0
)),
# model training and testing settings
train_cfg
=
dict
(
rpn
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.7
,
neg_iou_thr
=
0.3
,
min_pos_iou
=
0.3
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'RandomSampler'
,
num
=
256
,
pos_fraction
=
0.5
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
False
),
allowed_border
=
0
,
pos_weight
=-
1
,
debug
=
False
)),
test_cfg
=
dict
(
rpn
=
dict
(
nms_pre
=
2000
,
max_per_img
=
1000
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.7
),
min_bbox_size
=
0
)))
openmmlab_test/mmdetection-speed_xinpian/configs/_base_/models/ssd300.py
0 → 100644
View file @
85529f35
# model settings
input_size
=
300
model
=
dict
(
type
=
'SingleStageDetector'
,
pretrained
=
'open-mmlab://vgg16_caffe'
,
backbone
=
dict
(
type
=
'SSDVGG'
,
input_size
=
input_size
,
depth
=
16
,
with_last_pool
=
False
,
ceil_mode
=
True
,
out_indices
=
(
3
,
4
),
out_feature_indices
=
(
22
,
34
),
l2_norm_scale
=
20
),
neck
=
None
,
bbox_head
=
dict
(
type
=
'SSDHead'
,
in_channels
=
(
512
,
1024
,
512
,
256
,
256
,
256
),
num_classes
=
80
,
anchor_generator
=
dict
(
type
=
'SSDAnchorGenerator'
,
scale_major
=
False
,
input_size
=
input_size
,
basesize_ratio_range
=
(
0.15
,
0.9
),
strides
=
[
8
,
16
,
32
,
64
,
100
,
300
],
ratios
=
[[
2
],
[
2
,
3
],
[
2
,
3
],
[
2
,
3
],
[
2
],
[
2
]]),
bbox_coder
=
dict
(
type
=
'DeltaXYWHBBoxCoder'
,
target_means
=
[.
0
,
.
0
,
.
0
,
.
0
],
target_stds
=
[
0.1
,
0.1
,
0.2
,
0.2
])),
# model training and testing settings
train_cfg
=
dict
(
assigner
=
dict
(
type
=
'MaxIoUAssigner'
,
pos_iou_thr
=
0.5
,
neg_iou_thr
=
0.5
,
min_pos_iou
=
0.
,
ignore_iof_thr
=-
1
,
gt_max_assign_all
=
False
),
smoothl1_beta
=
1.
,
allowed_border
=-
1
,
pos_weight
=-
1
,
neg_pos_ratio
=
3
,
debug
=
False
),
test_cfg
=
dict
(
nms_pre
=
1000
,
nms
=
dict
(
type
=
'nms'
,
iou_threshold
=
0.45
),
min_bbox_size
=
0
,
score_thr
=
0.02
,
max_per_img
=
200
))
cudnn_benchmark
=
True
openmmlab_test/mmdetection-speed_xinpian/configs/_base_/schedules/schedule_1x.py
0 → 100644
View file @
85529f35
# optimizer
optimizer
=
dict
(
type
=
'SGD'
,
lr
=
0.02
,
momentum
=
0.9
,
weight_decay
=
0.0001
)
optimizer_config
=
dict
(
grad_clip
=
None
)
# learning policy
lr_config
=
dict
(
policy
=
'step'
,
warmup
=
'linear'
,
warmup_iters
=
500
,
warmup_ratio
=
0.001
,
step
=
[
8
,
11
])
runner
=
dict
(
type
=
'EpochBasedRunner'
,
max_epochs
=
2
)
openmmlab_test/mmdetection-speed_xinpian/configs/_base_/schedules/schedule_20e.py
0 → 100644
View file @
85529f35
# optimizer
optimizer
=
dict
(
type
=
'SGD'
,
lr
=
0.02
,
momentum
=
0.9
,
weight_decay
=
0.0001
)
optimizer_config
=
dict
(
grad_clip
=
None
)
# learning policy
lr_config
=
dict
(
policy
=
'step'
,
warmup
=
'linear'
,
warmup_iters
=
500
,
warmup_ratio
=
0.001
,
step
=
[
16
,
19
])
runner
=
dict
(
type
=
'EpochBasedRunner'
,
max_epochs
=
2
)
openmmlab_test/mmdetection-speed_xinpian/configs/_base_/schedules/schedule_2x.py
0 → 100644
View file @
85529f35
# optimizer
optimizer
=
dict
(
type
=
'SGD'
,
lr
=
0.02
,
momentum
=
0.9
,
weight_decay
=
0.0001
)
optimizer_config
=
dict
(
grad_clip
=
None
)
# learning policy
lr_config
=
dict
(
policy
=
'step'
,
warmup
=
'linear'
,
warmup_iters
=
500
,
warmup_ratio
=
0.001
,
step
=
[
16
,
22
])
runner
=
dict
(
type
=
'EpochBasedRunner'
,
max_epochs
=
2
)
openmmlab_test/mmdetection-speed_xinpian/configs/albu_example/README.md
0 → 100644
View file @
85529f35
# Albu Example
<!-- [OTHERS] -->
```
@article{2018arXiv180906839B,
author = {A. Buslaev, A. Parinov, E. Khvedchenya, V.~I. Iglovikov and A.~A. Kalinin},
title = "{Albumentations: fast and flexible image augmentations}",
journal = {ArXiv e-prints},
eprint = {1809.06839},
year = 2018
}
```
## Results and Models
| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
|:---------:|:-------:|:-------:|:--------:|:--------------:|:------:|:-------:|:------:|:--------:|
| R-50 | pytorch | 1x | 4.4 | 16.6 | 38.0 | 34.5 |
[
config
](
https://github.com/open-mmlab/mmdetection/tree/master/configs/albu_example/mask_rcnn_r50_fpn_albu_1x_coco.py
)
|
[
model
](
https://download.openmmlab.com/mmdetection/v2.0/albu_example/mask_rcnn_r50_fpn_albu_1x_coco/mask_rcnn_r50_fpn_albu_1x_coco_20200208-ab203bcd.pth
)
|
[
log
](
https://download.openmmlab.com/mmdetection/v2.0/albu_example/mask_rcnn_r50_fpn_albu_1x_coco/mask_rcnn_r50_fpn_albu_1x_coco_20200208_225520.log.json
)
|
Prev
1
…
19
20
21
22
23
24
25
26
27
…
49
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment