Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
dcuai
dlexamples
Commits
85529f35
Commit
85529f35
authored
Jul 30, 2022
by
unknown
Browse files
添加openmmlab测试用例
parent
b21b0c01
Changes
977
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
491 additions
and
0 deletions
+491
-0
openmmlab_test/mmclassification-speed-benchmark/configs/vgg/README.md
...st/mmclassification-speed-benchmark/configs/vgg/README.md
+30
-0
openmmlab_test/mmclassification-speed-benchmark/configs/vgg/metafile.yml
...mmclassification-speed-benchmark/configs/vgg/metafile.yml
+120
-0
openmmlab_test/mmclassification-speed-benchmark/configs/vgg/vgg11_b32x8_imagenet.py
...ation-speed-benchmark/configs/vgg/vgg11_b32x8_imagenet.py
+7
-0
openmmlab_test/mmclassification-speed-benchmark/configs/vgg/vgg11bn_b32x8_imagenet.py
...ion-speed-benchmark/configs/vgg/vgg11bn_b32x8_imagenet.py
+5
-0
openmmlab_test/mmclassification-speed-benchmark/configs/vgg/vgg13_b32x8_imagenet.py
...ation-speed-benchmark/configs/vgg/vgg13_b32x8_imagenet.py
+6
-0
openmmlab_test/mmclassification-speed-benchmark/configs/vgg/vgg13bn_b32x8_imagenet.py
...ion-speed-benchmark/configs/vgg/vgg13bn_b32x8_imagenet.py
+5
-0
openmmlab_test/mmclassification-speed-benchmark/configs/vgg/vgg16_b16x8_voc.py
...sification-speed-benchmark/configs/vgg/vgg16_b16x8_voc.py
+25
-0
openmmlab_test/mmclassification-speed-benchmark/configs/vgg/vgg16_b32x8_imagenet.py
...ation-speed-benchmark/configs/vgg/vgg16_b32x8_imagenet.py
+6
-0
openmmlab_test/mmclassification-speed-benchmark/configs/vgg/vgg16bn_b32x8_imagenet.py
...ion-speed-benchmark/configs/vgg/vgg16bn_b32x8_imagenet.py
+5
-0
openmmlab_test/mmclassification-speed-benchmark/configs/vgg/vgg19_b32x8_imagenet.py
...ation-speed-benchmark/configs/vgg/vgg19_b32x8_imagenet.py
+6
-0
openmmlab_test/mmclassification-speed-benchmark/configs/vgg/vgg19bn_b32x8_imagenet.py
...ion-speed-benchmark/configs/vgg/vgg19bn_b32x8_imagenet.py
+5
-0
openmmlab_test/mmclassification-speed-benchmark/configs/vision_transformer/vit_base_patch16_224_finetune_imagenet.py
...ion_transformer/vit_base_patch16_224_finetune_imagenet.py
+10
-0
openmmlab_test/mmclassification-speed-benchmark/configs/vision_transformer/vit_base_patch16_224_pretrain_imagenet.py
...ion_transformer/vit_base_patch16_224_pretrain_imagenet.py
+143
-0
openmmlab_test/mmclassification-speed-benchmark/configs/vision_transformer/vit_base_patch16_384_finetune_imagenet.py
...ion_transformer/vit_base_patch16_384_finetune_imagenet.py
+21
-0
openmmlab_test/mmclassification-speed-benchmark/configs/vision_transformer/vit_base_patch32_384_finetune_imagenet.py
...ion_transformer/vit_base_patch32_384_finetune_imagenet.py
+21
-0
openmmlab_test/mmclassification-speed-benchmark/configs/vision_transformer/vit_large_patch16_224_finetune_imagenet.py
...on_transformer/vit_large_patch16_224_finetune_imagenet.py
+10
-0
openmmlab_test/mmclassification-speed-benchmark/configs/vision_transformer/vit_large_patch16_384_finetune_imagenet.py
...on_transformer/vit_large_patch16_384_finetune_imagenet.py
+21
-0
openmmlab_test/mmclassification-speed-benchmark/configs/vision_transformer/vit_large_patch32_384_finetune_imagenet.py
...on_transformer/vit_large_patch32_384_finetune_imagenet.py
+21
-0
openmmlab_test/mmclassification-speed-benchmark/demo/demo.JPEG
...mlab_test/mmclassification-speed-benchmark/demo/demo.JPEG
+0
-0
openmmlab_test/mmclassification-speed-benchmark/demo/image_demo.py
..._test/mmclassification-speed-benchmark/demo/image_demo.py
+24
-0
No files found.
Too many changes to show.
To preserve performance only
977 of 977+
files are displayed.
Plain diff
Email patch
openmmlab_test/mmclassification-speed-benchmark/configs/vgg/README.md
0 → 100644
View file @
85529f35
# Very Deep Convolutional Networks for Large-Scale Image Recognition
## Introduction
<!-- [ALGORITHM] -->
```
latex
@article
{
simonyan2014very,
title=
{
Very deep convolutional networks for large-scale image recognition
}
,
author=
{
Simonyan, Karen and Zisserman, Andrew
}
,
journal=
{
arXiv preprint arXiv:1409.1556
}
,
year=
{
2014
}
}
```
## Results and models
### ImageNet
| Model | Params(M) | Flops(G) | Top-1 (%) | Top-5 (%) | Config | Download |
|:---------------------:|:---------:|:--------:|:---------:|:---------:|:---------:|:--------:|
| VGG-11 | 132.86 | 7.63 | 68.75 | 88.87 |
[
config
](
https://github.com/open-mmlab/mmclassification/blob/master/configs/vgg/vgg11_b32x8_imagenet.py
)
|
[
model
](
https://download.openmmlab.com/mmclassification/v0/vgg/vgg11_batch256_imagenet_20210208-4271cd6c.pth
)
|
[
log
](
https://download.openmmlab.com/mmclassification/v0/vgg/vgg11_batch256_imagenet_20210208-4271cd6c.log.json
)
|
| VGG-13 | 133.05 | 11.34 | 70.02 | 89.46 |
[
config
](
https://github.com/open-mmlab/mmclassification/blob/master/configs/vgg/vgg13_b32x8_imagenet.py
)
|
[
model
](
https://download.openmmlab.com/mmclassification/v0/vgg/vgg13_batch256_imagenet_20210208-4d1d6080.pth
)
|
[
log
](
https://download.openmmlab.com/mmclassification/v0/vgg/vgg13_batch256_imagenet_20210208-4d1d6080.log.json
)
|
| VGG-16 | 138.36 | 15.5 | 71.62 | 90.49 |
[
config
](
https://github.com/open-mmlab/mmclassification/blob/master/configs/vgg/vgg16_b32x8_imagenet.py
)
|
[
model
](
https://download.openmmlab.com/mmclassification/v0/vgg/vgg16_batch256_imagenet_20210208-db26f1a5.pth
)
|
[
log
](
https://download.openmmlab.com/mmclassification/v0/vgg/vgg16_batch256_imagenet_20210208-db26f1a5.log.json
)
|
| VGG-19 | 143.67 | 19.67 | 72.41 | 90.80 |
[
config
](
https://github.com/open-mmlab/mmclassification/blob/master/configs/vgg/vgg19_b32x8_imagenet.py
)
|
[
model
](
https://download.openmmlab.com/mmclassification/v0/vgg/vgg19_bn_batch256_imagenet_20210208-da620c4f.pth
)
|
[
log
](
https://download.openmmlab.com/mmclassification/v0/vgg/vgg19_bn_batch256_imagenet_20210208-da620c4f.log.json
)
|
| VGG-11-BN | 132.87 | 7.64 | 70.75 | 90.12 |
[
config
](
https://github.com/open-mmlab/mmclassification/blob/master/configs/vgg/vgg11bn_b32x8_imagenet.py
)
|
[
model
](
https://download.openmmlab.com/mmclassification/v0/vgg/vgg11_bn_batch256_imagenet_20210207-f244902c.pth
)
|
[
log
](
https://download.openmmlab.com/mmclassification/v0/vgg/vgg11_bn_batch256_imagenet_20210207-f244902c.log.json
)
|
| VGG-13-BN | 133.05 | 11.36 | 72.15 | 90.71 |
[
config
](
https://github.com/open-mmlab/mmclassification/blob/master/configs/vgg/vgg13bn_b32x8_imagenet.py
)
|
[
model
](
https://download.openmmlab.com/mmclassification/v0/vgg/vgg13_bn_batch256_imagenet_20210207-1a8b7864.pth
)
|
[
log
](
https://download.openmmlab.com/mmclassification/v0/vgg/vgg13_bn_batch256_imagenet_20210207-1a8b7864.log.json
)
|
| VGG-16-BN | 138.37 | 15.53 | 73.72 | 91.68 |
[
config
](
https://github.com/open-mmlab/mmclassification/blob/master/configs/vgg/vgg16_b32x8_imagenet.py
)
|
[
model
](
https://download.openmmlab.com/mmclassification/v0/vgg/vgg16_bn_batch256_imagenet_20210208-7e55cd29.pth
)
|
[
log
](
https://download.openmmlab.com/mmclassification/v0/vgg/vgg16_bn_batch256_imagenet_20210208-7e55cd29.log.json
)
|
| VGG-19-BN | 143.68 | 19.7 | 74.70 | 92.24 |
[
config
](
https://github.com/open-mmlab/mmclassification/blob/master/configs/vgg/vgg19bn_b32x8_imagenet.py
)
|
[
model
](
https://download.openmmlab.com/mmclassification/v0/vgg/vgg19_bn_batch256_imagenet_20210208-da620c4f.pth
)
|
[
log
](
https://download.openmmlab.com/mmclassification/v0/vgg/vgg19_bn_batch256_imagenet_20210208-da620c4f.log.json
)
|
openmmlab_test/mmclassification-speed-benchmark/configs/vgg/metafile.yml
0 → 100644
View file @
85529f35
Collections
:
-
Name
:
VGG
Metadata
:
Training Data
:
ImageNet
Training Techniques
:
-
SGD with Momentum
-
Weight Decay
Training Resources
:
8x Xp GPUs
Epochs
:
100
Batch Size
:
256
Architecture
:
-
VGG
Paper
:
https://arxiv.org/abs/1409.1556
README
:
configs/vgg/README.md
Models
:
-
Config
:
configs/vgg/vgg11_b32x8_imagenet.py
In Collection
:
VGG
Metadata
:
FLOPs
:
7630000000
Parameters
:
132860000
Name
:
vgg11_b32x8_imagenet
Results
:
-
Dataset
:
ImageNet
Metrics
:
Top 1 Accuracy
:
68.75
Top 5 Accuracy
:
88.87
Task
:
Image Classification
Weights
:
https://download.openmmlab.com/mmclassification/v0/vgg/vgg11_batch256_imagenet_20210208-4271cd6c.pth
-
Config
:
configs/vgg/vgg13_b32x8_imagenet.py
In Collection
:
VGG
Metadata
:
FLOPs
:
11340000000
Parameters
:
133050000
Name
:
vgg13_b32x8_imagenet
Results
:
-
Dataset
:
ImageNet
Metrics
:
Top 1 Accuracy
:
70.02
Top 5 Accuracy
:
89.46
Task
:
Image Classification
Weights
:
https://download.openmmlab.com/mmclassification/v0/vgg/vgg13_batch256_imagenet_20210208-4d1d6080.pth
-
Config
:
configs/vgg/vgg16_b32x8_imagenet.py
In Collection
:
VGG
Metadata
:
FLOPs
:
15500000000
Parameters
:
138360000
Name
:
vgg16_b32x8_imagenet
Results
:
-
Dataset
:
ImageNet
Metrics
:
Top 1 Accuracy
:
71.62
Top 5 Accuracy
:
90.49
Task
:
Image Classification
Weights
:
https://download.openmmlab.com/mmclassification/v0/vgg/vgg16_batch256_imagenet_20210208-db26f1a5.pth
-
Config
:
configs/vgg/vgg19_b32x8_imagenet.py
In Collection
:
VGG
Metadata
:
FLOPs
:
19670000000
Parameters
:
143670000
Name
:
vgg19_b32x8_imagenet
Results
:
-
Dataset
:
ImageNet
Metrics
:
Top 1 Accuracy
:
72.41
Top 5 Accuracy
:
90.8
Task
:
Image Classification
Weights
:
https://download.openmmlab.com/mmclassification/v0/vgg/vgg19_bn_batch256_imagenet_20210208-da620c4f.pth
-
Config
:
configs/vgg/vgg11bn_b32x8_imagenet.py
In Collection
:
VGG
Metadata
:
FLOPs
:
7640000000
Parameters
:
132870000
Name
:
vgg11bn_b32x8_imagenet
Results
:
-
Dataset
:
ImageNet
Metrics
:
Top 1 Accuracy
:
70.75
Top 5 Accuracy
:
90.12
Task
:
Image Classification
Weights
:
https://download.openmmlab.com/mmclassification/v0/vgg/vgg11_bn_batch256_imagenet_20210207-f244902c.pth
-
Config
:
configs/vgg/vgg13bn_b32x8_imagenet.py
In Collection
:
VGG
Metadata
:
FLOPs
:
11360000000
Parameters
:
133050000
Name
:
vgg13bn_b32x8_imagenet
Results
:
-
Dataset
:
ImageNet
Metrics
:
Top 1 Accuracy
:
72.15
Top 5 Accuracy
:
90.71
Task
:
Image Classification
Weights
:
https://download.openmmlab.com/mmclassification/v0/vgg/vgg13_bn_batch256_imagenet_20210207-1a8b7864.pth
-
Config
:
configs/vgg/vgg16_b32x8_imagenet.py
In Collection
:
VGG
Metadata
:
FLOPs
:
15530000000
Parameters
:
138370000
Name
:
vgg16_b32x8_imagenet
Results
:
-
Dataset
:
ImageNet
Metrics
:
Top 1 Accuracy
:
73.72
Top 5 Accuracy
:
91.68
Task
:
Image Classification
Weights
:
https://download.openmmlab.com/mmclassification/v0/vgg/vgg16_bn_batch256_imagenet_20210208-7e55cd29.pth
-
Config
:
configs/vgg/vgg19bn_b32x8_imagenet.py
In Collection
:
VGG
Metadata
:
FLOPs
:
19700000000
Parameters
:
143680000
Name
:
vgg19bn_b32x8_imagenet
Results
:
-
Dataset
:
ImageNet
Metrics
:
Top 1 Accuracy
:
74.7
Top 5 Accuracy
:
92.24
Task
:
Image Classification
Weights
:
https://download.openmmlab.com/mmclassification/v0/vgg/vgg19_bn_batch256_imagenet_20210208-da620c4f.pth
openmmlab_test/mmclassification-speed-benchmark/configs/vgg/vgg11_b32x8_imagenet.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/vgg11.py'
,
'../_base_/datasets/imagenet_bs32_pil_resize.py'
,
'../_base_/schedules/imagenet_bs256.py'
,
'../_base_/default_runtime.py'
,
]
optimizer
=
dict
(
lr
=
0.01
)
openmmlab_test/mmclassification-speed-benchmark/configs/vgg/vgg11bn_b32x8_imagenet.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/vgg11bn.py'
,
'../_base_/datasets/imagenet_bs32_pil_resize.py'
,
'../_base_/schedules/imagenet_bs256.py'
,
'../_base_/default_runtime.py'
]
openmmlab_test/mmclassification-speed-benchmark/configs/vgg/vgg13_b32x8_imagenet.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/vgg13.py'
,
'../_base_/datasets/imagenet_bs32_pil_resize.py'
,
'../_base_/schedules/imagenet_bs256.py'
,
'../_base_/default_runtime.py'
]
optimizer
=
dict
(
lr
=
0.01
)
openmmlab_test/mmclassification-speed-benchmark/configs/vgg/vgg13bn_b32x8_imagenet.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/vgg13bn.py'
,
'../_base_/datasets/imagenet_bs32_pil_resize.py'
,
'../_base_/schedules/imagenet_bs256.py'
,
'../_base_/default_runtime.py'
]
openmmlab_test/mmclassification-speed-benchmark/configs/vgg/vgg16_b16x8_voc.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/datasets/voc_bs16.py'
,
'../_base_/default_runtime.py'
]
# use different head for multilabel task
model
=
dict
(
type
=
'ImageClassifier'
,
backbone
=
dict
(
type
=
'VGG'
,
depth
=
16
,
num_classes
=
20
),
neck
=
None
,
head
=
dict
(
type
=
'MultiLabelClsHead'
,
loss
=
dict
(
type
=
'CrossEntropyLoss'
,
use_sigmoid
=
True
,
loss_weight
=
1.0
)))
# load model pretrained on imagenet
load_from
=
'https://download.openmmlab.com/mmclassification/v0/vgg/vgg16_batch256_imagenet_20210208-db26f1a5.pth'
# noqa
# optimizer
optimizer
=
dict
(
type
=
'SGD'
,
lr
=
0.001
,
momentum
=
0.9
,
weight_decay
=
0
,
paramwise_cfg
=
dict
(
custom_keys
=
{
'.backbone.classifier'
:
dict
(
lr_mult
=
10
)}))
optimizer_config
=
dict
(
grad_clip
=
None
)
# learning policy
lr_config
=
dict
(
policy
=
'step'
,
step
=
20
,
gamma
=
0.1
)
runner
=
dict
(
type
=
'EpochBasedRunner'
,
max_epochs
=
40
)
openmmlab_test/mmclassification-speed-benchmark/configs/vgg/vgg16_b32x8_imagenet.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/vgg16.py'
,
'../_base_/datasets/imagenet_bs32_pil_resize.py'
,
'../_base_/schedules/imagenet_bs256.py'
,
'../_base_/default_runtime.py'
]
optimizer
=
dict
(
lr
=
0.01
)
openmmlab_test/mmclassification-speed-benchmark/configs/vgg/vgg16bn_b32x8_imagenet.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/vgg16bn.py'
,
'../_base_/datasets/imagenet_bs32_pil_resize.py'
,
'../_base_/schedules/imagenet_bs256.py'
,
'../_base_/default_runtime.py'
]
openmmlab_test/mmclassification-speed-benchmark/configs/vgg/vgg19_b32x8_imagenet.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/vgg19.py'
,
'../_base_/datasets/imagenet_bs32_pil_resize.py'
,
'../_base_/schedules/imagenet_bs256.py'
,
'../_base_/default_runtime.py'
]
optimizer
=
dict
(
lr
=
0.01
)
openmmlab_test/mmclassification-speed-benchmark/configs/vgg/vgg19bn_b32x8_imagenet.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/vgg19bn.py'
,
'../_base_/datasets/imagenet_bs32_pil_resize.py'
,
'../_base_/schedules/imagenet_bs256.py'
,
'../_base_/default_runtime.py'
]
openmmlab_test/mmclassification-speed-benchmark/configs/vision_transformer/vit_base_patch16_224_finetune_imagenet.py
0 → 100644
View file @
85529f35
# Refer to pytorch-image-models
_base_
=
[
'../_base_/models/vit_base_patch16_224_finetune.py'
,
'../_base_/datasets/imagenet_bs32_pil_resize.py'
,
'../_base_/schedules/imagenet_bs256_epochstep.py'
,
'../_base_/default_runtime.py'
]
img_norm_cfg
=
dict
(
mean
=
[
127.5
,
127.5
,
127.5
],
std
=
[
127.5
,
127.5
,
127.5
],
to_rgb
=
True
)
openmmlab_test/mmclassification-speed-benchmark/configs/vision_transformer/vit_base_patch16_224_pretrain_imagenet.py
0 → 100644
View file @
85529f35
_base_
=
[
'../_base_/models/vit_base_patch16_224_pretrain.py'
,
'../_base_/datasets/imagenet_bs64_pil_resize.py'
,
'../_base_/schedules/imagenet_bs4096_AdamW.py'
,
'../_base_/default_runtime.py'
]
policies
=
[
[
dict
(
type
=
'Posterize'
,
bits
=
4
,
prob
=
0.4
),
dict
(
type
=
'Rotate'
,
angle
=
30.
,
prob
=
0.6
)
],
[
dict
(
type
=
'Solarize'
,
thr
=
256
/
9
*
4
,
prob
=
0.6
),
dict
(
type
=
'AutoContrast'
,
prob
=
0.5
)
],
[
dict
(
type
=
'Equalize'
,
prob
=
0.8
),
dict
(
type
=
'Equalize'
,
prob
=
0.6
)],
[
dict
(
type
=
'Posterize'
,
bits
=
5
,
prob
=
0.6
),
dict
(
type
=
'Posterize'
,
bits
=
5
,
prob
=
0.6
)
],
[
dict
(
type
=
'Equalize'
,
prob
=
0.4
),
dict
(
type
=
'Solarize'
,
thr
=
256
/
9
*
5
,
prob
=
0.2
)
],
[
dict
(
type
=
'Equalize'
,
prob
=
0.4
),
dict
(
type
=
'Rotate'
,
angle
=
30
/
9
*
8
,
prob
=
0.8
)
],
[
dict
(
type
=
'Solarize'
,
thr
=
256
/
9
*
6
,
prob
=
0.6
),
dict
(
type
=
'Equalize'
,
prob
=
0.6
)
],
[
dict
(
type
=
'Posterize'
,
bits
=
6
,
prob
=
0.8
),
dict
(
type
=
'Equalize'
,
prob
=
1.
)],
[
dict
(
type
=
'Rotate'
,
angle
=
10.
,
prob
=
0.2
),
dict
(
type
=
'Solarize'
,
thr
=
256
/
9
,
prob
=
0.6
)
],
[
dict
(
type
=
'Equalize'
,
prob
=
0.6
),
dict
(
type
=
'Posterize'
,
bits
=
5
,
prob
=
0.6
)
],
[
dict
(
type
=
'Rotate'
,
angle
=
30
/
9
*
8
,
prob
=
0.8
),
dict
(
type
=
'ColorTransform'
,
magnitude
=
0.
,
prob
=
0.4
)
],
[
dict
(
type
=
'Rotate'
,
angle
=
30.
,
prob
=
0.4
),
dict
(
type
=
'Equalize'
,
prob
=
0.6
)
],
[
dict
(
type
=
'Equalize'
,
prob
=
0.0
),
dict
(
type
=
'Equalize'
,
prob
=
0.8
)],
[
dict
(
type
=
'Invert'
,
prob
=
0.6
),
dict
(
type
=
'Equalize'
,
prob
=
1.
)],
[
dict
(
type
=
'ColorTransform'
,
magnitude
=
0.4
,
prob
=
0.6
),
dict
(
type
=
'Contrast'
,
magnitude
=
0.8
,
prob
=
1.
)
],
[
dict
(
type
=
'Rotate'
,
angle
=
30
/
9
*
8
,
prob
=
0.8
),
dict
(
type
=
'ColorTransform'
,
magnitude
=
0.2
,
prob
=
1.
)
],
[
dict
(
type
=
'ColorTransform'
,
magnitude
=
0.8
,
prob
=
0.8
),
dict
(
type
=
'Solarize'
,
thr
=
256
/
9
*
2
,
prob
=
0.8
)
],
[
dict
(
type
=
'Sharpness'
,
magnitude
=
0.7
,
prob
=
0.4
),
dict
(
type
=
'Invert'
,
prob
=
0.6
)
],
[
dict
(
type
=
'Shear'
,
magnitude
=
0.3
/
9
*
5
,
prob
=
0.6
,
direction
=
'horizontal'
),
dict
(
type
=
'Equalize'
,
prob
=
1.
)
],
[
dict
(
type
=
'ColorTransform'
,
magnitude
=
0.
,
prob
=
0.4
),
dict
(
type
=
'Equalize'
,
prob
=
0.6
)
],
[
dict
(
type
=
'Equalize'
,
prob
=
0.4
),
dict
(
type
=
'Solarize'
,
thr
=
256
/
9
*
5
,
prob
=
0.2
)
],
[
dict
(
type
=
'Solarize'
,
thr
=
256
/
9
*
4
,
prob
=
0.6
),
dict
(
type
=
'AutoContrast'
,
prob
=
0.6
)
],
[
dict
(
type
=
'Invert'
,
prob
=
0.6
),
dict
(
type
=
'Equalize'
,
prob
=
1.
)],
[
dict
(
type
=
'ColorTransform'
,
magnitude
=
0.4
,
prob
=
0.6
),
dict
(
type
=
'Contrast'
,
magnitude
=
0.8
,
prob
=
1.
)
],
[
dict
(
type
=
'Equalize'
,
prob
=
0.8
),
dict
(
type
=
'Equalize'
,
prob
=
0.6
)],
]
dataset_type
=
'ImageNet'
img_norm_cfg
=
dict
(
mean
=
[
123.675
,
116.28
,
103.53
],
std
=
[
58.395
,
57.12
,
57.375
],
to_rgb
=
True
)
train_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'RandomResizedCrop'
,
size
=
224
),
dict
(
type
=
'RandomFlip'
,
flip_prob
=
0.5
,
direction
=
'horizontal'
),
dict
(
type
=
'AutoAugment'
,
policies
=
policies
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'ToTensor'
,
keys
=
[
'gt_label'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
,
'gt_label'
])
]
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'Resize'
,
size
=
(
256
,
-
1
),
backend
=
'pillow'
),
dict
(
type
=
'CenterCrop'
,
crop_size
=
224
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
])
]
data
=
dict
(
samples_per_gpu
=
64
,
workers_per_gpu
=
2
,
train
=
dict
(
type
=
dataset_type
,
data_prefix
=
'data/imagenet/train'
,
pipeline
=
train_pipeline
),
val
=
dict
(
type
=
dataset_type
,
data_prefix
=
'data/imagenet/val'
,
ann_file
=
'data/imagenet/meta/val.txt'
,
pipeline
=
test_pipeline
),
test
=
dict
(
# replace `data/val` with `data/test` for standard test
type
=
dataset_type
,
data_prefix
=
'data/imagenet/val'
,
ann_file
=
'data/imagenet/meta/val.txt'
,
pipeline
=
test_pipeline
))
evaluation
=
dict
(
interval
=
1
,
metric
=
'accuracy'
)
openmmlab_test/mmclassification-speed-benchmark/configs/vision_transformer/vit_base_patch16_384_finetune_imagenet.py
0 → 100644
View file @
85529f35
# Refer to pytorch-image-models
_base_
=
[
'../_base_/models/vit_base_patch16_384_finetune.py'
,
'../_base_/datasets/imagenet_bs32_pil_resize.py'
,
'../_base_/schedules/imagenet_bs256_epochstep.py'
,
'../_base_/default_runtime.py'
]
img_norm_cfg
=
dict
(
mean
=
[
127.5
,
127.5
,
127.5
],
std
=
[
127.5
,
127.5
,
127.5
],
to_rgb
=
True
)
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'Resize'
,
size
=
(
384
,
-
1
),
backend
=
'pillow'
),
dict
(
type
=
'CenterCrop'
,
crop_size
=
384
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
])
]
data
=
dict
(
test
=
dict
(
pipeline
=
test_pipeline
))
openmmlab_test/mmclassification-speed-benchmark/configs/vision_transformer/vit_base_patch32_384_finetune_imagenet.py
0 → 100644
View file @
85529f35
# Refer to pytorch-image-models
_base_
=
[
'../_base_/models/vit_base_patch32_384_finetune.py'
,
'../_base_/datasets/imagenet_bs32_pil_resize.py'
,
'../_base_/schedules/imagenet_bs256_epochstep.py'
,
'../_base_/default_runtime.py'
]
img_norm_cfg
=
dict
(
mean
=
[
127.5
,
127.5
,
127.5
],
std
=
[
127.5
,
127.5
,
127.5
],
to_rgb
=
True
)
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'Resize'
,
size
=
(
384
,
-
1
),
backend
=
'pillow'
),
dict
(
type
=
'CenterCrop'
,
crop_size
=
384
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
])
]
data
=
dict
(
test
=
dict
(
pipeline
=
test_pipeline
))
openmmlab_test/mmclassification-speed-benchmark/configs/vision_transformer/vit_large_patch16_224_finetune_imagenet.py
0 → 100644
View file @
85529f35
# Refer to pytorch-image-models
_base_
=
[
'../_base_/models/vit_large_patch16_224_finetune.py'
,
'../_base_/datasets/imagenet_bs32_pil_resize.py'
,
'../_base_/schedules/imagenet_bs256_epochstep.py'
,
'../_base_/default_runtime.py'
]
img_norm_cfg
=
dict
(
mean
=
[
127.5
,
127.5
,
127.5
],
std
=
[
127.5
,
127.5
,
127.5
],
to_rgb
=
True
)
openmmlab_test/mmclassification-speed-benchmark/configs/vision_transformer/vit_large_patch16_384_finetune_imagenet.py
0 → 100644
View file @
85529f35
# Refer to pytorch-image-models
_base_
=
[
'../_base_/models/vit_large_patch16_384_finetune.py'
,
'../_base_/datasets/imagenet_bs32_pil_resize.py'
,
'../_base_/schedules/imagenet_bs256_epochstep.py'
,
'../_base_/default_runtime.py'
]
img_norm_cfg
=
dict
(
mean
=
[
127.5
,
127.5
,
127.5
],
std
=
[
127.5
,
127.5
,
127.5
],
to_rgb
=
True
)
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'Resize'
,
size
=
(
384
,
-
1
),
backend
=
'pillow'
),
dict
(
type
=
'CenterCrop'
,
crop_size
=
384
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
])
]
data
=
dict
(
test
=
dict
(
pipeline
=
test_pipeline
))
openmmlab_test/mmclassification-speed-benchmark/configs/vision_transformer/vit_large_patch32_384_finetune_imagenet.py
0 → 100644
View file @
85529f35
# Refer to pytorch-image-models
_base_
=
[
'../_base_/models/vit_large_patch32_384_finetune.py'
,
'../_base_/datasets/imagenet_bs32_pil_resize.py'
,
'../_base_/schedules/imagenet_bs256_epochstep.py'
,
'../_base_/default_runtime.py'
]
img_norm_cfg
=
dict
(
mean
=
[
127.5
,
127.5
,
127.5
],
std
=
[
127.5
,
127.5
,
127.5
],
to_rgb
=
True
)
test_pipeline
=
[
dict
(
type
=
'LoadImageFromFile'
),
dict
(
type
=
'Resize'
,
size
=
(
384
,
-
1
),
backend
=
'pillow'
),
dict
(
type
=
'CenterCrop'
,
crop_size
=
384
),
dict
(
type
=
'Normalize'
,
**
img_norm_cfg
),
dict
(
type
=
'ImageToTensor'
,
keys
=
[
'img'
]),
dict
(
type
=
'Collect'
,
keys
=
[
'img'
])
]
data
=
dict
(
test
=
dict
(
pipeline
=
test_pipeline
))
openmmlab_test/mmclassification-speed-benchmark/demo/demo.JPEG
0 → 100644
View file @
85529f35
107 KB
openmmlab_test/mmclassification-speed-benchmark/demo/image_demo.py
0 → 100644
View file @
85529f35
from
argparse
import
ArgumentParser
from
mmcls.apis
import
inference_model
,
init_model
,
show_result_pyplot
def
main
():
parser
=
ArgumentParser
()
parser
.
add_argument
(
'img'
,
help
=
'Image file'
)
parser
.
add_argument
(
'config'
,
help
=
'Config file'
)
parser
.
add_argument
(
'checkpoint'
,
help
=
'Checkpoint file'
)
parser
.
add_argument
(
'--device'
,
default
=
'cuda:0'
,
help
=
'Device used for inference'
)
args
=
parser
.
parse_args
()
# build the model from a config file and a checkpoint file
model
=
init_model
(
args
.
config
,
args
.
checkpoint
,
device
=
args
.
device
)
# test a single image
result
=
inference_model
(
model
,
args
.
img
)
# show the results
show_result_pyplot
(
model
,
args
.
img
,
result
)
if
__name__
==
'__main__'
:
main
()
Prev
1
…
6
7
8
9
10
11
12
13
14
…
49
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment