@@ -197,7 +193,7 @@ Get started in seconds with our verified environments. Click each icon below for
...
@@ -197,7 +193,7 @@ Get started in seconds with our verified environments. Click each icon below for
|Weights and Biases|Roboflow ⭐ NEW|
|Weights and Biases|Roboflow ⭐ NEW|
|:-:|:-:|
|:-:|:-:|
|Automatically track and visualize all your YOLOv5 training runs in the cloud with [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme)|Label and export your custom datasets directly to YOLOv5 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) |
|Automatically track and visualize all your YOLOv5 training runs in the cloud with [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme)|Label and automatically export your custom datasets directly to YOLOv5 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) |
<!-- ## <div align="center">Compete and Win</div>
<!-- ## <div align="center">Compete and Win</div>
...
@@ -229,7 +225,6 @@ We are super excited about our first-ever Ultralytics YOLOv5 🚀 EXPORT Competi
...
@@ -229,7 +225,6 @@ We are super excited about our first-ever Ultralytics YOLOv5 🚀 EXPORT Competi
@@ -251,20 +246,21 @@ We are super excited about our first-ever Ultralytics YOLOv5 🚀 EXPORT Competi
...
@@ -251,20 +246,21 @@ We are super excited about our first-ever Ultralytics YOLOv5 🚀 EXPORT Competi
* All checkpoints are trained to 300 epochs with default settings and hyperparameters.
* All checkpoints are trained to 300 epochs with default settings and hyperparameters.
***mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.<br>Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
***mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.<br>Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
***Speed** averaged over COCO val images using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) instance. NMS times (~1 ms/img) not included.<br>Reproduce by `python val.py --data coco.yaml --img 640 --task speed --batch 1`
***Speed** averaged over COCO val images using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) instance. NMS times (~1 ms/img) not included.<br>Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45`
***TTA**[Test Time Augmentation](https://github.com/ultralytics/yolov5/issues/303) includes reflection and scale augmentations.<br>Reproduce by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
***TTA**[Test Time Augmentation](https://github.com/ultralytics/yolov5/issues/303) includes reflection and scale augmentations.<br>Reproduce by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
</details>
</details>
## <div align="center">Contribute</div>
## <div align="center">Contribute</div>
We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see our [Contributing Guide](CONTRIBUTING.md) to get started, and fill out the [YOLOv5 Survey](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experiences. Thank you to all our contributors!
We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see
our [Contributing Guide](CONTRIBUTING.md) to get started, and fill out