Commit 316d3f90 authored by Pan,Huiwen's avatar Pan,Huiwen
Browse files

增加ds框架测试模型

parent aebde649
DeepSpeed @ 6bd444a7
Subproject commit 6bd444a7c62e9d7d320dd4c1e1142062f50c861d
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v1.2.3
hooks:
- id: trailing-whitespace
exclude: "Megatron-LM/"
- id: check-yaml
exclude: "Megatron-LM/"
- id: end-of-file-fixer
exclude: "Megatron-LM/"
- repo: https://github.com/pre-commit/mirrors-yapf
rev: v0.29.0
hooks:
- id: yapf
exclude: "Megatron-LM/"
{
"train_batch_size": 32,
"train_micro_batch_size_per_gpu": 1,
"steps_per_print": 10,
"optimizer": {
"type": "Adam",
"params": {
"lr": 2e-5,
"weight_decay": 0.0,
"bias_correction": true
}
},
"gradient_clipping": 1.0,
"fp16": {
"enabled": false
}
}
\ No newline at end of file
{
"train_batch_size": 32,
"train_micro_batch_size_per_gpu": 1,
"steps_per_print": 10,
"optimizer": {
"type": "Adam",
"params": {
"lr": 2e-5,
"weight_decay": 0.0,
"bias_correction": true
}
},
"gradient_clipping": 1.0,
"fp16": {
"enabled": false
}
}
\ No newline at end of file
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
import os
import random
import h5py
import logging
import json
from concurrent.futures import ProcessPoolExecutor
import numpy as np
import torch
import torch.distributed as dist
from torch.utils.data import DataLoader, Dataset
from torch.utils.data.sampler import RandomSampler
from torch.utils.data.distributed import DistributedSampler
from bert_dataset_provider import BertDatasetProviderInterface
from turing.dataset import BatchType, map_to_torch
# Workaround because python functions are not picklable
class WorkerInitObj(object):
def __init__(self, seed):
self.seed = seed
def __call__(self, id):
np.random.seed(seed=self.seed + id)
random.seed(self.seed + id)
def create_pretraining_dataset(input_file, max_predictions_per_seq,
num_workers, train_batch_size, worker_init,
data_sampler):
train_data = pretraining_dataset(
input_file=input_file, max_predictions_per_seq=max_predictions_per_seq)
train_dataloader = DataLoader(train_data,
sampler=data_sampler(train_data),
batch_size=train_batch_size,
num_workers=num_workers,
worker_init_fn=worker_init,
pin_memory=True)
return train_dataloader, len(train_data)
class pretraining_dataset(Dataset):
def __init__(self, input_file, max_predictions_per_seq):
self.input_file = input_file
self.max_predictions_per_seq = max_predictions_per_seq
f = h5py.File(input_file, "r")
keys = [
'input_ids', 'input_mask', 'segment_ids', 'masked_lm_positions',
'masked_lm_ids', 'next_sentence_labels'
]
self.inputs = [np.asarray(f[key][:]) for key in keys]
f.close()
def __len__(self):
'Denotes the total number of samples'
return len(self.inputs[0])
def __getitem__(self, index):
[
input_ids, input_mask, segment_ids, masked_lm_positions,
masked_lm_ids, next_sentence_labels
] = [
torch.from_numpy(input[index].astype(np.int64)) if indice < 5 else
torch.from_numpy(np.asarray(input[index].astype(np.int64)))
for indice, input in enumerate(self.inputs)
]
masked_lm_labels = torch.ones(input_ids.shape, dtype=torch.long) * -1
index = self.max_predictions_per_seq
# store number of masked tokens in index
padded_mask_indices = (masked_lm_positions == 0).nonzero()
if len(padded_mask_indices) != 0:
index = padded_mask_indices[0].item()
masked_lm_labels[masked_lm_positions[:index]] = masked_lm_ids[:index]
return [
map_to_torch([BatchType.PRETRAIN_BATCH]), input_ids, input_mask,
segment_ids, next_sentence_labels, masked_lm_labels
]
class NvidiaBertDatasetProvider(BertDatasetProviderInterface):
def __init__(self, args):
self.num_workers = args.config['training']['num_workers']
self.max_seq_length = args.max_seq_length
self.max_predictions_per_seq = args.max_predictions_per_seq
self.gradient_accumulation_steps = args.gradient_accumulation_steps
self.train_micro_batch_size_per_gpu = args.train_micro_batch_size_per_gpu
self.logger = args.logger
if args.local_rank == -1:
self.global_rank = 0
self.world_size = 1
else:
self.global_rank = dist.get_rank()
self.world_size = dist.get_world_size()
# Initialize dataset files
dataset_path = os.path.join(
args.data_path_prefix,
args.config['data']['datasets']['pretrain_dataset'])
self.dataset_files = [
os.path.join(dataset_path, f) for f in os.listdir(dataset_path) if
os.path.isfile(os.path.join(dataset_path, f)) and 'training' in f
]
self.dataset_files.sort()
random.shuffle(self.dataset_files)
self.num_files = len(self.dataset_files)
self.data_sampler = RandomSampler
self.worker_init = WorkerInitObj(args.seed + args.local_rank)
self.dataset_future = None
self.pool = ProcessPoolExecutor(1)
if self.global_rank == 0:
self.logger.info(
f"NvidiaBertDatasetProvider - Initialization: num_files = {self.num_files}"
)
def get_shard(self, index):
if self.dataset_future is None:
data_file = self._get_shard_file(index)
self.train_dataloader, sample_count = create_pretraining_dataset(
input_file=data_file,
max_predictions_per_seq=self.max_predictions_per_seq,
num_workers=self.num_workers,
train_batch_size=self.train_micro_batch_size_per_gpu,
worker_init=self.worker_init,
data_sampler=self.data_sampler)
else:
self.train_dataloader, sample_count = self.dataset_future.result(
timeout=None)
return self.train_dataloader, sample_count
def release_shard(self, index):
del self.train_dataloader
def prefetch_shard(self, index):
data_file = self._get_shard_file(index)
self.dataset_future = self.pool.submit(
create_pretraining_dataset, data_file,
self.max_predictions_per_seq, self.num_workers,
self.train_micro_batch_size_per_gpu, self.worker_init,
self.data_sampler)
def get_batch(self, batch_iter):
return batch_iter
def prefetch_batch(self):
pass
def _get_shard_file(self, shard_index):
file_index = self._get_shard_file_index(shard_index, self.global_rank)
return self.dataset_files[file_index % self.num_files]
def _get_shard_file_index(self, shard_index, global_rank):
if dist.is_initialized() and self.world_size > self.num_files:
remainder = self.world_size % self.num_files
file_index = (shard_index * self.world_size) + global_rank + (
remainder * shard_index)
else:
file_index = shard_index * self.world_size + global_rank
return file_index % self.num_files
__version__ = "0.4.0"
from .tokenization import BertTokenizer, BasicTokenizer, WordpieceTokenizer
from .modeling import (BertConfig, BertModel, BertForPreTraining,
BertForMaskedLM, BertForNextSentencePrediction,
BertForSequenceClassification, BertForMultipleChoice,
BertForTokenClassification, BertForQuestionAnswering)
from .optimization import BertAdam
from .file_utils import PYTORCH_PRETRAINED_BERT_CACHE
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment